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Abstract

There is extensive empirical research on the potential volatility trans-
mission from futures to spot market. Rather than just focussing on the
e¤ect of futures trading on spot volatility, this paper deals with the
contemporaneous relationship between futures trading volume and the
overall probability distribution of spot market returns. To disentangle
the potential destabilizing e¤ect of futures trading activity from cross-
interactions due to price discovery process, futures volume is broken down
into two drivers: expected and unexpected trading activity. Then, a non-
parametric approach is used to estimate the density function of spot return
conditional to both spot and futures trading volume. Empirical evidence
using intraday data from the Spanish stock index futures market over the
period 2000-2002 is provided. Our empirical …ndings can be summarized
as follows: i) spot market volatility is positively related to spot trading
volume, ii) for any given spot trading volume, a signi…cant and positive
relationship between unexpected futures trading activity and spot volatil-
ity is detected; however no signi…cant relationship arise when expected
futures trading volume is considered. These …ndings are consistent with
theoretical models predicting that futures trading activity is not a force
behind irrational spot price ‡uctuations.

1 Introduction
Since their introduction, stock index futures markets have experienced a sub-
stantial increase in trading activity. Financial futures contracts are key instru-
ments in portfolio management, as they allow for risk transference. Moreover,
derivative markets play an important role within the price discovery process of
underlying assets. Stock index futures have relatively lower transaction costs
and capital requirements, so the arrival of external information is quickly incor-
porated into prices as investors’ expectations are updated.
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The existence of mispricing relative to the cost-of-carry valuation of a stock
index futures contract has been well documented in the literature (see Mackin-
lay and Ramaswamy (1988), Miller et al., (1994), Yadav and Pope (1990, 1994),
Bühler and Kempf (1995) and Fund and Draper (1999), among others). How-
ever, either mispricing occurs within the non-pro…table arbitrage bounds (see,
for example, Lim (1992)) or the adjustment in response to pricing error takes
place rapidly (see Taylor et al. (2000), Dwyer et al. (1996), Tse (2001) and Chu
and Hsieh (2002)).

Given that spot and futures prices are linked by arbitrage operations, one
popular perception is that arbitrage trading activities involving index futures
and underlying equities increase stock volatility. Recent episodes of market crash
and volatility contagion among countries did not contribute to mitigate such
perception. The destabilizing hypothesis has also been supported by academic
research. Criticisms of derivative markets argue that lower transaction costs
in futures markets attract uninformed speculative order ‡ow, introducing noisy
information in the price discovery process, reducing the informativeness of prices
and leading to spot price instability (see Cox (1976) and Stein (1987), among
others, for relevant theoretical contributions supporting this argument).

Under risk aversion, higher volatility should lead to higher risk premium.
This way, transmission of volatility from futures to spot market could raise the
required rate of return of investors in the market, leading to a misallocation of
resources and a potential loss of welfare in the economy. Hence, empirical work
on the relationship between futures trading and spot volatility is of considerable
interest for practitioners and specially for regulators1 .

Even though the relationship between spot volatility and futures trading
activity has been extensively analyzed in the literature, empirical evidence is
far from conclusive. Following an event study approach, some researchers focus
on the behavior of stock index volatility before and after the introduction of
the derivative market (see, for example, Antoniou and Holmes (1995), Pericli
and Koutmos (1997), Antoniou et al. (1998) and Rahman (2001)). However, as
pointed out by Bessembinder and Seguin (1992), the potential volatility change
revealed in these studies ”need not be solely attributable to the introduction
of futures” (p. 2026), but also to other changes in the …nancial environment
during the period examined.

To overcome this problem, Bessembinder and Seguin (1992) proposed an al-
ternative approach which just focuses on a time period subsequent to the intro-
duction of futures market. In particular, to disentangle the potential destabiliz-
ing e¤ects of futures market from the cross-interactions involved in the price dis-
covery process, Bessembinder and Seguin (1992) suggest to break down futures
trading volume into expected and unexpected components using an ARIMA
…lter. Once the decomposition is carried out, the contemporaneous relationship
between spot volatility and expected (or informantionless) futures trading ac-
tivity is examined (see Illueca and Lafuente (2003), Board et al. (2001) and

1 Indeed, the alleged increase in volatility has led to proposals of closer regulation in the
US futures markets during the eighties.
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Gulen and Mayhew (2000), among other works following this approach).
Given the overwhelming empirical evidence supporting that market-wide

new information disseminates faster in the futures than in the spot market, and
consistent with the hypothesis that information shocks generate trading vol-
ume in futures market, a positive relationship between futures volume shocks
and spot volatility is expected as traders update their relevant information set.
However, the transmission of volatility due to unexpected volume (or volume
shocks) should not be considered as a source of instability. Indeed, as stated
by Willian J. Rainer (Chairman of the Commodity Futures Trading Commi-
sion, October 28, 1999, 22nd Annual Chicago-Kent College of Law Derivatives),
”there is no case for regulating …nancial futures on the basis of price discovery”.

A common feature in the extant literature is the use of a parametric frame-
work to i) estimate spot market volatility and ii) test the e¤ect of futures trad-
ing on stock index volatility considering a particular econometric speci…cation
relating both variables. However, the stochastic properties of the parameters in-
volved depends on the distributional asumptions of errors. Moreover, as pointed
out in Bollerslev et al. (1992), the widely used GARCH models which add fu-
tures volume to spot variance equation as an exogenous explanatory variable
may su¤er from mispeci…cation, leading to biased estimation.

This paper contributes to the literature by using a non-parametric framework
to strengthen the Bessembinder and Seguin’s approach. In spite of just restrict-
ing the analysis to spot volatility, we generalize the concept of destabilization by
considering the e¤ect of futures trading activity on the overall spot return dis-
tribution. The Value at Risk of the underlying asset could substantially change
even when volatility remains stable relative to futures trading activity. In this
paper, kernel smoothing is used to estimate the distribution of spot returns
conditional to both spot and futures trading volume. Once the e¤ect of futures
trading on the overall spot distribution is analyzed, the impact on any particu-
lar moment of the conditional distribution can be tested. In accordance with to
the extant literature, we focus on the second order central moment which can
be considered as an implied measure of conditional spot volatility that does not
assume any particular ”news impact surface” (see Kroner and Ng (1998)).

Empirical evidence using 15-minute data from the Spanish stock index fu-
tures market is provided from December 1999 to December 2002. Our empirical
results show that higher unexpected trading activity in futures markets is as-
sociated with higher volatility in spot market, regardless its level of trading
activity. However estimated e¤ects of expected futures trading activity on spot
volatility are not statistically signi…cant. In sum, our empirical …ndings do not
support the destabilizing hypothesis, at least for the Spanish case.

The rest of the paper is organized as follows. Section II describes the data set
and the variables used in the analysis. In section III we present the methodology
used to estimate the conditional density function of spot returns. Section IV
provides empirical evidence on the relationship between spot returns distribu-
tion and both spot and futures trading volume. Finally, section V summarizes
and makes concluding remarks.
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2 Data

2.1 Description of the variables and sample period
Data on the Ibex 35 spot and futures markets were provided by MEFF RV
(Mercado Español de Futuros, Renta Variable) for the period January 17, 2000-
December 20, 2002. The number of trading days is equal to 7272 . The intraday
trading period considered covers from 9:00 to 17:303. Matched data using fu-
tures prices and the Ibex 35 index was generated. From matched data we
selected 15-minutes prices and then, we generated the percent return series for
each market by taking the …rst di¤erence of the natural logarithm. We excluded
overnight returns because they are measured over a longer time period. This
procedure …nally gave 34 return observations for each trading day. We associ-
ated the volume traded 4 within the corresponding 15-minutes trading interval
to each spot and futures market return. Overall, we obtained 24,718 return and
trading volume observations for each market.

Since the nearest to maturity contract is systematically the most actively
traded, only data for the nearby futures contract was used. The point in time
at which the current contract is rolled to the next is selected according to futures
market depth. Ma et al. (1992) show that the conclusions drawn from three
common empirical tests of futures markets (namely, a) risk-return combinations
of a buy-and-hold trading strategy, b) serial dependence between returns and c)
daily e¤ects in the pay-o¤ distributions) are not robust to the choice of method
for rolling over futures contracts. The methods considered involve combinations
of alternative dates at which the current contract is rolled as well as price
adjustments. Figure 1 (Appendix 2) shows the intraday average trading volume
within the expiration date, revealing that at 16:30 the next maturity becomes
the higher volume contract. From that moment on, returns are computed using
prices that correspond to such maturity.

2.2 Decomposition of detrended volume
To detrend spot and futures volume series, we …rst partitioned the intraday
trading period into eight intervals according to the following time sequence:
[9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:30]5 . For each market and
each interval we formed stationary time series of trading volume by using a
centered moving average (see Fung and Patterson (1999) and Campbell et al.
(1993)):

2 Data from: a) 07/11/2000 and b) 11/02/2001 were not available in the Me¤ Renta Vari-
able data set, and were therefore not included.

3 Before January 17, 2000, Ibex 35 futures contracts were traded from 9:30 to 17:00.
4 Trading volume is measured in millions of euros.
5 We performed such time partition to take into account the intraday U-shape curve in

trading volume.
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where T Vt¡1;t is the trading volume between t ¡ 1 and t, N is the number of
observations used to capture the trend of the series. We consider N = 21 for
the seven hourly intervals generated from 9:00 to 16:00. For the last interval
(16:00 to 17:30) we set N = 31. This volume measure produces a detrended
time series that incorporates the change in the short-run movement in trading
volume. Table 1 provides the Augmented Dickey fuller test on the detrended
volume series for both spot and futures market, thus corroborating that they
are stationary.

For each trading interval we decompose volume into predictable and unpre-
dictable components by using a bivarite Vector Autoregression:
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where Ut~N (0; §), ªj are 2 £ 2 matrices that capture the impact of past trad-
ing volume in both markets. The …tted values from 2 are interpreted as the
informationless trading, while the residuals of the model are interpreted as the
innovation in trading activity in each market. The lag structure used involves
past information corresponding to the three previous days 6 . Table 2 reports the
test for joint signi…cance of each group of lags. Signi…cant cross interactions be-
tween trading volume are detected, suggesting that a univariate ARIMA model
would not be adequate to …lter raw series in order to identify expected and
unexpected trading volume variables.

3 Methodology
To test the e¤ect of trading activity on spot volatility, two approaches have
been widely proposed in the literature: a) conventional regression analysis, and
b) GARCH models. The …rst approach is a two-stage procedure. Initially,
a estimation of volatility is performed by means of squared returns, Garman-
Klass statistic (Garman-Klass (1980)), among many others. An econometric
speci…cation involving trading activity and volatility variables is then estimated.
The second approach is a one stage procedure which allows for the incorporation
of the e¤ect of trading volume in the estimation of market volatility.

Assuming without loss of generality that spot return (Rs) has zero mean,
parametric approaches seek to test whether in

E
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2
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¡
R2

s;t¡j; j > 0
¢
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6 Empirical results reported in the paper are qualitatively robusts to alternative speci…ca-
tions of the VAR model (p = 24; p = 36).

5



the coe¢cient ° is not signi…cant at conventional levels, where © is a parametric
function and T Af;t is a variable that refers to futures trading activity (trading
volume, open interest and related).

However, there is no reason why researchers should be only interested in the
conditional variance of spot returns. More generally, and specially under depar-
tures from normality, the researcher might focus on the behavior of the overall
spot return distribution. In this paper, we use a kernel estimation procedure to
analyze the e¤ect of futures trading activity on spot prices. Kernel estimation
is a non-parametric technique for estimating the joint density of a set of random
variables (Silverman, (1986)). A kernel estimator of a bivariate density is

fM (X ; H) =
1

T

TX

i=1

KH (X ¡ Xi) (4)

where T is the sample size, Xi denotes the i ¡ th sample observation of a two-
dimensional variable7 , KH is a function involving the Kernel function (K ) and
the smoothing matrix (H), with the following general form:

KH (Z) = jH j¡ 1
2 K

³
H¡ 1

2 Z
´

(5)

The Epanechnikov kernel function (Epanechnikov (1969)) is used8 :

K (x) = f
2
¼

(1 ¡ x0x) if x0x < 1
0 if x0x ¸ 1

Relative to the smoothing parameters, the window width matrix is com-
puted according to the plug-in-solve-the equation method suggested by Wand
and Jones (1994).

To implement the objective of the paper, we …rst estimate the joint proba-
bility distribution of the bivariate (Rs ; V olume) vector. Secondly, the implied
unconditional marginal density function of volume is obtained from the bivari-
ate density. The density function of spot returns conditional to trading volume
is then computed as the ratio between the joint density function and the implied
marginal density of trading volume.

The …nal outcome is similar to a multidimensional histogram. Just as with
an histogram, for each point in the sample a ”block” of volume 1

T
is added.

However, two key di¤erences must be highlighted: i) when the Epanechnikov
kernel is considered, the ”blocks” are not rectangular, and ii) they are centered
at each data point rather than at the center of a …xed number of bins.

7 For operational purposes, all the variables involved in the kernel estimation are re-scaled
dividing by their standard deviation.

8 The use of the Epanechnikov kernel leads to minimize the MISE. However, other rea-
sonable kernel functions could have been used (gaussian, rectangular or triangular, among
others). Previous literature on kernel estimation suggests that these functions give almost
optimal results.
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4 Empirical Results

4.1 Spot return and spot trading volume
Following Bessembinder and Seguin (1992), we initially investigate the con-
temporaneous relationship between spot return distribution and spot trading
volume. Figure 2 depicts the density function of spot returns conditional to
total spot trading volume. As it is readily apparent, the conditional density
functions of spot returns vary in accordance with spot volume. In particular,
the probabilistic mass spreads as trading activity augments, suggesting a pos-
itive relationship between price ‡uctuation and market depth in spot market.
The breakdown of total spot volume into expected and unexpected components
provides additional insights about the nature of the linkages between spot re-
turns and spot trading activity. Figures 3 and 4 show the density functions
of spot returns conditional to informationless volume and volume shocks, re-
spectively. Interestingly enough, while Figure 4 replicates the pattern of the
conditional density shown in Figure 2, the conditioning on expected trading
volume seems to be less relevant. Table 3 reports the results of testing the null
hypothesis of stochastic independence between spot return distribution and spot
trading volume (total, expected and unexpected) distribution. Empirical values
systematically lead to reject the null at 1% signi…cance level.

These …ndings are consistent with previous research showing a positive cor-
relation between volume and absolute returns in equity markets (see Karpo¤,
1987). One possible explanation is the information ‡ow hypothesis. Since price
changes per unit of calendar time are the sum of the prices changes ocurring
during such period, if it is assumed that a) prices evolve when new information
arrives at the market and b) the number of information arrivals is random, a
positive correlation is expected between volume and absolute returns as volume
is positively correlated with the number of information arrivals to the market.

In sum, the previous …ndings reveal that spot trading volume is a relevant
variable to explain the behavior of spot price changes, suggesting that volume
of trade is a good proxy to represent the rate of information ‡ow in the market.
Under the assumption that the number of information arrivals is an autocorre-
lated random variable, volume should contribute signi…cantly in explaining the
GARCH e¤ects in stock returns. Indeed, Lamoureux and Lastrapes (1990) pro-
vide empirical evidence showing that the parameter estimates of the GARCH
model become insigni…cant when volume of trade is used in the conditional
variance of stock returns.

4.2 Spot return and total futures trading activity
In this section we proceed to analyze the relantionship between futures trading
volume and spot return distribution. Based on the foregoing empirical …ndings,
the e¤ect of spot trading activity on the distribution of spot returns should be
taken into account. In particular, the null hypothesis that we are going to test
is:
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H0 : g (Rs jT Vs) = g (RsjT Vs ; T Vf )

where g refers to the density function, R and TV denote returns and total
volume respectively, and subindexes s and f refer to spot and futures markets.

To implement the analysis we partition the total sample of the (Rs ;T Vs; T Vf )
tridimensional variable into …ve equally sized groups according to .20-th quan-
tiles of TVf . Let us denote each of the …ve subsamples of the bivariate (Rs ;T Vs)

variable as (Rs ; TVs)
j where j denotes that the subsample corresponds to the

[(j ¡ 1) ¤ 20; j ¤ 20] -th quantile of TVf .
Figures 5 to 7 depict the density function of spot return conditional to spot

trading volume for j = 1; 3; 59 . Two interesting aspects arise from these …gures:
a) only for the …fth subsample (high futures trading activity) the conditional
density of spot returns is similar to that reported in Figure 2 corresponding
to g (RsjT Vs), and b) the conditional density of spot returns does not remain
unchanged as futures trading activity augments. Given a particular spot market
depth, higher futures trading activity is associated with larger tails of spot
returns distribution. To formally test the foregoing null hypothesis of equality
between conditional distributions, a goodness-of-…t test is performed. Empirical
values of the chi-squared test are reported in table 5. In all cases, the null
hypothesis of equality is rejected at 1% signi…cance level. In sum, our empirical
…ndings reveal that both spot and futures trading volumes are relevant variables
to explain the distribution of spot price changes.

4.2.1 The e¤ect of futures trading activity: price discovery or desta-
bilization?

As mentioned above, any transaction in the derivative market should not be
considered as a potential source of instability. Unexpected trading volume is
related to the information arrivals to the market, while the expected component
can be considered as the natural activity in the derivative market, that is, futures
trading volume when no relevant new information arrives at the market.

There is conclusive evidence in the literature on the leadership of futures
markets over the price discovery process. The arrival of new information tends
to disseminate faster in the futures markets, inducing spot price changes through
arbitrage operations. This way, as long as shocks a¤ect both markets in the same
direction, a positive correlation between unexpected volume and absolute spot
returns is expected.

As pointed out by Besembinder and Seguin (1992), the destabilizing hypoth-
esis concerns the relationship between expected futures trading and spot market
returns. Now, the relevant null hypothesis is:

H0 : g (RsjT Vs) = g (Rs jT Vs ;EVf )

9 To save space the conditional density functions corresponding to j = 2; 4 are not reported
in the paper. They are available from the authors upon request. Anyway, the reported …gures
allow to properly observe the behavior of the conditional density function under alternative
(low, medium and high) futures trading activity.
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where EVf denotes the expected futures volume.
Figures 8 to 10 report the conditional density of spot returns for alterna-

tive (low, medium, high) levels of expected futures trading activity. The visual
inspection of these …gures does not reveal any substantial di¤erence between
them. Indeed, conditional densities are quite similar to that depicted in Figure
2 corresponding to g (Rs jTVs). Table 6 presents the empirical values of the
goodness-of-…t test for the previous null hypothesis. As expected, the null hy-
pothesis of equality between both conditional density functions is not rejected at
conventional levels, corroborating that informationless futures volume does not
incorporate relevant information to explain spot market returns. This …nding
does not support the existence of destabilizing e¤ects from the Ibex 35 futures
market to spot index.

Relative to the impact of futures volume shocks, the relevant null hypothesis
is:

H0 : g (RsjT Vs) = g (Rs jTVs ;U Vf )

where UVf denotes the unexpected futures volume.
Figures 11 to 13 depict the density function of spot returns conditional to

di¤erent levels of unexpected futures trading volume. In contrast to the pat-
tern observed in Figures 8 to 10, the conditional densities vary now with the
level of unanticipated futures trading. Speci…cally, the higher unexpected fu-
tures trading, the higher dispersion of conditional spot returns, suggesting that
a volatility transmission to the spot market takes place when futures prices
react to the arrival of new information. However, as already mentioned, this
pattern is to be expected in the price discovery process. These di¤erences in
the conditional density functions are corroborated by the empirical values of the
chi-squared statistic to test the null hypothesis of equality between conditional
distributions (see Table 7), which systematically lead to reject the null at 1%
signi…cance level.

In sum, our empirical …ndings for the Spanish market reveal that futures
trading activity is a signi…cant variable to explain the density function of spot
returns conditional to spot trading volume. However, this relationship is solely
attributable to the price discovery function of the futures market, that is, no
destabilizing e¤ects are detected.

Once the impact on the overall distribution is analyzed, a partial study
concerning the moments of the probability distribution could provide additional
insights. Indeed, as the conditional distribution changes, their moments should
change as well. In accordance with previous research in the literature, the
particular case of the second order central moment is carried out in the following
section.

4.2.2 Conditional volatility analysis

From the density function of spot return conditional to spot trading volume, the
conditional second order central moment for alternative levels of futures trading
volume is:
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V ar (Rs jTVs ;Vf ) =
R +1

¡1 (Rs ¡ E (RsjT Vs ; Vf ))
2
g (Rs jTVs ; Vf ) dRs

where Vf is a variable that refers to the nature of futures trading volume
(total, expected and unexpected).

Figure 14 shows the variance of spot return conditional to spot volume1 0

for each of the …ve subsamples drawn according to the .20-th quantiles of to-
tal futures trading volume. As expected from the shape of previously reported
conditional density functions, higher futures activity is associated with higher
volatility for any spot market depth. A Kolmogorov-Smirnov test is performed
to statistically corroborate such pattern. In particular, the null and the alter-
native hypothesis are:

H0 : F
¡
¾2

s jTVs ; TVj;f

¢
= F

¡
¾2

s jTVs ; TVj+1;f

¢

H1 : F
¡
¾2

s jTVs ; TVj;f

¢
> F

¡
¾2

s jTVs ; TVj+1;f

¢

where ¾2
s denotes the conditional spot variance and F refers to the cumula-

tive distribution function and T Vj;f is the total futures volume that corresponds
to the [(j¡1)¤20; j¤20] -th quantile. Table 8 reports the empirical values of the
test, which con…rm a positive relationship between conditional spot volatility
and total futures trading activity.

Figure 15 and 16 depict the conditional spot volatility under di¤erent levels
of expected and unexpected futures trading volume. While spot volatility re-
mains unchanged as informationless futures volume rises, a positive relationship
between spot price ‡uctuations and futures trading activity arises when the un-
expected component is considered. Tables 9 and 10 provide the empirical values
of the corresponding Kolmogorov-Smirnov test for the expected and unexpected
futures volume, respectively. In both cases, the results of the test are consistent
with the pattern observed in the conditional spot volatility.

5 Conclusions
This paper provides empirical evidence on the destabilizing hypothesis in the
Spanish stock index futures market. In spite of just focusing on the e¤ect of
futures trading on spot volatility, we propose a more general approach which
consists of examining the contemporaneous relationship between futures trading
activity and the overall probability distribution of spot market returns.

Using 15-minute intraday data covering the period 2000-2002, a non-parametric
kernel smoothing procedure is applied to estimate the conditional density func-
tion of spot returns conditional to spot volume. Consistent with the information
‡ow hypothesis, spot volume signi…cantly contributes to explain spot price ‡uc-
tuations.

To test the e¤ect of futures trading on the distribution of spot returns, we
reestimate the conditional density function of spot returns under di¤erent levels

10 The implicit conditional variance is computed for each of the .02-th quantile of the spot
volume.
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of futures trading volume (low, medium and high activity). Empirical results
reveal that the conditional density function of spot returns depends on futures
trading. In particular, higher futures trading leads to fatter-tailed conditional
distributions of spot returns.

To investigate whether or not such tail behavior is solely related to the price
discovery function of futures market, we break down the total futures volume
into unexpected and expected components using VAR methodology. The e¤ect
of unexpected futures volume is similar to that of total trading volume. But,
interestingly enough, the estimated conditional density function of spot returns
remains unchanged under di¤erent levels of expected futures trading volume.

In accordance with previous research in the literature, a particular analysis
of the conditional second order central moment (conditional spot volatility) is
also performed. Consistent with previous …ndings, the expected futures trading
volume does not contribute to explain the conditional spot volatility of spot
returns. However, the arrival of new information to the futures market is posi-
tively correlated with conditional spot volatility.

In summary, contrary to the traditional view of futures trading, this research
provides no empirical support for futures market being a force behind spot
destabilization. Therefore, there is no justi…cation for regulatory initiatives
to limit futures trading based on the assumption that futures trading tends
to destabilize spot market prices, at least in the Spanish stock index futures
market.
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Appendix 1 (Tables)
Table 1. Unit root test for stock and futures market volume series

Spot Futures
Trading interval

9:00-10:00 -23.82 -22.48
10:00-11:00 -23.11 -23.75
11:00-12:00 -23.59 -23.39
13:00-14:00 -23.84 -22.56
14:00-15:00 -24.73 -23.02
15:00-16:00 -24.43 -22.96
16:00-17:30 -25.63 -24.81

The table reports the results of the test of the null hypothesis H0 : ½ = 0
from the regresions of the form:

¢Vt = ½Vt¡1 + ® +

pX

j=1

¢Vt¡j + "t

where the number of lags (p = 12) is chosen in order to ensure no signi…cant
residual autocorrelation. The MacKinnon critical values for rejection of hypoth-
esis of a unit root at the 1% and 5% signifcance level are -3.4421 and -2.8660,
respectively.

Table 2. Test of joint signi…cance in the VAR model
Dependent variable V spot V fut
Group of regressors V spot V fut V spot V fut

Trading interval
9:00 - 10:00 223.8 145.2 178.5 276.5
10:00 - 11:00 262.8 66.2 283.8 148.1
11:00 - 12:00 302.0 54.0 298.7 125.5
12:00 - 13:00 362.8 87.9 290.0 181.9
13:00 - 14:00 263.0 60.0 320.5 135.8
14:00 - 15:00 381.7 35.1 347.0 182.3
15:00 - 16:00 343.5 115.7 378.4 254.9
16:00 - 17:30 693.7 121.9 353.4 300.4

Note: Empirical values of the Wald test systematically lead to reject at conven-
tional levels the null hypothesis that all the coe¢cients corresponding to each group
of regressors are equal to zero.
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Table 3. Testing stochastic independence between spot return
and spot volume distributions
Null Hypothesis: Independence between Â2

(r¡1)2
p-value r

Spot return and Total spot Volume 2611.2 (0.00) 23
Spot return and Expected spot Volume 1706.6 (0.00) 40
Spot return and Unexpected spot Volume 2512.5 (0.00) 28

Note: To implement this test a discrete version of the conditional density
function is required. A partition of both supports (spot return and volume) into
r equally sized groups is considered. The chi-squared statistic to test the null
hypothesis of stochastic independence is:Pr

i=1

Pr
j=1

(Nij¡Ni:N:j)2

Ni:N:j
where Ni:N:j = T

r2 , T is the sample size and
Nij is the number of observations within the i ¡ th group of returns and the
j ¡ th group of volume. The use of the asymptotic distribution is suitable when
Nij ¸ 5. To maximize the power of the test, we consider the maximum number
of groups (r) subject to the previous constraint.

Table 4. Correlation coe¢cients between spot volatility and spot volume
Correlation Total Volume Expected Volume Unexpected Volume
Pearson 0.96(¤) 0.72(¤) 0.88(¤)

Spearman 1.00(¤) 0.63(¤) 1.00(¤)

Note: (¤) denotes statistical at 1% level.

Table 5. Testing the equality between conditional distributions of
spot returns for alternative levels of total futures trading volume
Null Hypothesis: Â2

(r¡1)2
p-value r

g (RsjT Vs) = g
¡
Rs jT V 1

s

¢
933.5 (0.00) 17

g (RsjT Vs) = g
¡
Rs jT V 2

s

¢
442.5 (0.00) 18

g (RsjT Vs) = g
¡
Rs jT V 3

s

¢
429.3 (0.00) 19

g (RsjT Vs) = g
¡
Rs jT V 4

s

¢
383.3 (0.00) 16

g (RsjT Vs) = g
¡
Rs jT V 5

s

¢
369.8 (0.00) 10

Note: T V j
s refers to the subsample of (Rs ; TVs) that corresponds to the

[(j ¡1)¤ 20; j ¤ 20] -th quantile of total futures volume. To implement this test
a discrete version of the conditional density function is required. A partition of
both supports (spot return and volume) into r equally sized groups is considered.
The chi-squared statistic to test the goodness-of-…t is:

Pr
i=1

Pr
k=1

(f
;j
ik¡pik)

2

pik
where pi;k = NikP

i Nik

T
5r , T is the sample size and f

;j
ik

is the number of observations within the i ¡ th group of returns and the k ¡ th
group of spot volume within the subsample corresponding to [(j ¡1)¤ 20; j ¤ 20]
-th quantile of total futures volume. The use of the asymptotic distribution
is suitable when f ;j

ik ¸ 5. To maximize the power of the test, we consider the
maximum number of groups (r) sub ject to the previous constraint.
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Table 6. Testing the equality between conditional distributions of
spot returns for alternative levels of expected futures trading volume
Null Hypothesis: Â2

(r¡1)2
p-value r

g (RsjT Vs) = g
¡
Rs jT V 1

s

¢
108.3 (0.79) 12

g (RsjT Vs) = g
¡
Rs jT V 2

s

¢
96.9 (0.95) 12

g (RsjT Vs) = g
¡
Rs jT V 3

s

¢
142.0 (0.53) 13

g (RsjT Vs) = g
¡
Rs jT V 4

s

¢
168.8 (0.92) 15

g (RsjT Vs) = g
¡
Rs jT V 5

s

¢
173.1 (0.88) 15

Note: T V j
s refers to the subsample of (Rs ; TVs) that corresponds to the

[(j ¡ 1) ¤ 20; j ¤ 20] -th quantile of expected futures volume. To implement
this test a discrete version of the conditional density function is required. A
partition of both supports (spot return and volume) into r equally sized groups
is considered. The chi-squared statistic to test the goodness-of-…t is:

Pr
i=1

Pr
k=1

(f
;j
ik¡pik)

2

pik
where pi;k = NikP

i Nik

T
5r , T is the sample size and f

;j
ik

is the number of observations within the i ¡ th group of returns and the k ¡ th
group of spot volume within the subsample corresponding to [(j ¡1)¤20; j ¤20] -
th quantile of expected futures volume. The use of the asymptotic distribution
is suitable when f ;j

ik ¸ 5. To maximize the power of the test, we consider the
maximum number of groups (r) sub ject to the previous constraint.

Table 7. Testing the equality between conditional distributions of
spot returns for alternative levels of unexpected futures trading volume
Null Hypothesis: Â2

(r¡1)2
p-value r

g (RsjT Vs) = g
¡
Rs jT V 1

s

¢
773.0 (0.00) 17

g (RsjT Vs) = g
¡
Rs jT V 2

s

¢
331.1 (0.00) 16

g (RsjT Vs) = g
¡
Rs jT V 3

s

¢
330.5 (0.00) 17

g (RsjT Vs) = g
¡
Rs jT V 4

s

¢
273.2 (0.00) 13

g (RsjT Vs) = g
¡
Rs jT V 5

s

¢
360.9 (0.00) 9

Note: T V j
s refers to the subsample of (Rs ; TVs) that corresponds to the

[(j ¡ 1) ¤ 20; j ¤ 20] -th quantile of unexpected futures volume. To implement
this test a discrete version of the conditional density function is required. A
partition of both supports (spot return and volume) into r equally sized groups
is considered. The chi-squared statistic to test the goodness-of-…t is:

Pr
i=1

Pr
k=1

(f ;j
ik¡pik)

2

pik

where pi;k = NikP
i Nik

T
5r , T is the sample size and f

;j
ik

is the number of observations within the i ¡ th group of returns and the k ¡ th
group of spot volume within the subsample corresponding to [(j¡1)¤20; j¤20] -th
quantile of unexpected futures volume. The use of the asymptotic distribution
is suitable when f ;j

ik ¸ 5. To maximize the power of the test, we consider the
maximum number of groups (r) sub ject to the previous constraint.
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Table 8. Testing the equality between conditional volatility distributions
for alternative levels of total futures trading volume

KS

H0 : F
¡
¾2

s jTVs ; TV1;f

¢
= F

¡
¾2

s jTVs ; TV2;f

¢

H1 : F
¡
¾2

s jTVs ; TV1;f

¢
> F

¡
¾2

s jTVs ; TV2;f

¢
.959(¤¤¤)

H0 : F
¡
¾2

s jTVs ; TV2;f

¢
= F

¡
¾2

s jTVs ; TV3;f

¢

H1 : F
¡
¾2

s jTVs ; TV2;f

¢
> F

¡
¾2

s jTVs ; TV3;f

¢
.878(¤¤¤)

H0 : F
¡
¾2

s jTVs ; TV3;f

¢
= F

¡
¾2

s jTVs ; TV4;f

¢

H1 : F
¡
¾2

s jTVs ; TV3;f

¢
> F

¡
¾2

s jTVs ; TV4;f

¢
.490(¤¤¤)

H0 : F
¡
¾2

s jTVs ; TV4;f

¢
= F

¡
¾2

s jTVs ; TV5;f

¢

H1 : F
¡
¾2

s jTVs ; TV4;f

¢
> F

¡
¾2

s jTVs ; TV5;f

¢
.225(¤)

Note: (¤) and (¤¤¤) denotes the rejection of the null hypothesis at 10% and
1% signicance level, respectively.

Table 9. Testing the equality between conditional volatility distributions
for alternative levels of expected futures trading volume

KS

H0 : F
¡
¾2

s jTVs ; EV1;f

¢
= F

¡
¾2

s jTVs ;EV2;f

¢

H1 : F
¡
¾2

s jTVs ; EV1;f

¢
6= F

¡
¾2

s jTVs ;EV2;f

¢
.163

H0 : F
¡
¾2

s jTVs ; EV2;f

¢
= F

¡
¾2

s jTVs ;EV3;f

¢

H1 : F
¡
¾2

s jTVs ; EV2;f

¢
6= F

¡
¾2

s jTVs ;EV3;f

¢
.082

H0 : F
¡
¾2

s jTVs ; EV3;f

¢
= F

¡
¾2

s jTVs ;EV4;f

¢

H1 : F
¡
¾2

s jTVs ; EV3;f

¢
6= F

¡
¾2

s jTVs ;EV4;f

¢
.163

H0 : F
¡
¾2

s jTVs ; EV4;f

¢
= F

¡
¾2

s jTVs ;EV5;f

¢

H1 : F
¡
¾2

s jTVs ; EV4;f

¢
6= F

¡
¾2

s jTVs ;EV5;f

¢
.163

Note: None of the tests lead to reject the null hypothesis at 1% signi…cance
level.

Table 10. Testing the equality between conditional volatility distributions
for alternative levels of unexpected futures trading volume

KS
H0 : F

¡
¾2

s jTVs ; UV1;f

¢
= F

¡
¾2

s jT Vs ;U V2;f

¢

H1 : F
¡
¾2

s jTVs ; UV1;f

¢
> F

¡
¾2

s jT Vs ;U V2;f

¢
.737(¤¤¤)

H0 : F
¡
¾2

s jTVs ; UV2;f

¢
= F

¡
¾2

s jT Vs ;U V3;f

¢

H1 : F
¡
¾2

s jTVs ; UV2;f

¢
> F

¡
¾2

s jT Vs ;U V3;f

¢
.551(¤¤¤)

H0 : F
¡
¾2

s jTVs ; UV3;f

¢
= F

¡
¾2

s jT Vs ;U V4;f

¢

H1 : F
¡
¾2

s jTVs ; UV3;f

¢
> F

¡
¾2

s jT Vs ;U V4;f

¢
.490(¤¤¤)

H0 : F
¡
¾2

s jTVs ; UV4;f

¢
= F

¡
¾2

s jT Vs ;U V5;f

¢

H1 : F
¡
¾2

s jTVs ; UV4;f

¢
> F

¡
¾2

s jT Vs ;U V5;f

¢
.245(¤)

Note: (¤) and (¤¤¤) denotes the rejection of the null hypothesis at 10% and
1% signicance level, respectively..
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Appendix 2 (Figures)
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Figure 1. Average intraday futures trading volume within time to maturity
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Figure 2. Density function of spot return conditional to total spot volume
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Figure 3. Density function of spot return conditional to
expected spot volume
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Figure 4. Density function of spot return conditional to
unexpected spot volume
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Figure 5. Density function of spot return conditional to total spot volume
when the total contemporaneous futures volume 2 [0-20]-th quantile
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Figure 6. Density function of spot return conditional to total spot volume
when the total contemporaneous futures volume 2 [40-60]-th quantile
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Figure 7. Density function of spot return conditional to total spot volume
when the total contemporaneous futures volume 2 [80-100]-th quantile
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Figure 8. Density function of spot return conditional to total spot volume
when the expected contemporaneous futures volume 2 [0-20]-th quantile
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Figure 9. Density function of spot return conditional to total spot volume
when the expected contemporaneous futures volume 2 [40-60]-th quantile
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Figure 10. Density function of spot return conditional to total spot volume
when the expected contemporaneous futures volume 2 [80-100]-th quantile
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Figure 11. Density function of spot return conditional to total spot volume
when the unexpected contemporaneous futures volume 2 [0-20]-th quantile
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Figure 12. Density function of spot return conditional to total spot volume
when the unexpected contemporaneous futures volume 2 [40-60]-th quantile
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Figure 13. Density function of spot return conditional to total spot volume
when the unexpected contemporaneous futures volume 2 [80-100]-th quantile
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Figure 14. Conditional variance of spot returns under di¤erent levels of total
futures trading volume (TF TV )
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Figure 15. Conditional variance of spot returns under di¤erent levels of
expected futures trading volume (EF TV )
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Figure 16. Conditional variance of spot returns under di¤erent levels of
unexpected futures trading volume (UF TV )
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