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1. Introduction: FAIR VALUES

International norms IAS / IFRS for all financial institutions
in Europe

As from 01/ 01/2005

General principle  of fair  valuation of  elements  for assets 
as well as for liabilities

-IAS 19 : Employee benefits (pension plan)
-IAS 39 : Financial instruments
-IAS ?? : Insurance contracts 
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1. Introduction: FAIR VALUES

Basic principle : from an historical or statutory accounting
philosophy to fair value bases 

Fair value : price at which an instrument would be traded
if  a liquid market existed for this instrument 

ASSETS :  market values 

LIABILITIES :  ???
If  no market  value :  principle  of estimation  of future
cash flows properly discounted and taking into account
the different kinds of risk
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1. Introduction: FAIR VALUES

Need to develop good models of valuation especially for
actuarial liabilities where there is a mixing between financial
elements (optional  elements,  guarantee ,…)  and  insurance 
risk elements ( mortality, disability,…)

Consistency between modern financial pricing theory and 
classical actuarial models

Even if for  competition reasons methods of pricing could 
remain very classical , fair valuation will require new insights
taking into account modern finance
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2. STATE PRICES AND DEFLATORS
Single period model :

one riskless asset : 

rateriskfreerwithrSS =+= )1()0()1( 00

d risky assets defined on a probability space :

NjPpwith jjN ,...,1})({},...,,{ 21 ===Ω ωωωω

diSSSS Niiii ,...,1)),1(),...,,1(),,1(()1( 21 == ωωω

classical assumption of absence of arbitrage opportunities
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2. STATE PRICES AND DEFLATORS

STATE PRICE : random variable ψ such that for any asset :
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2. STATE PRICES AND DEFLATORS

Property 1 :  for i=0 ( riskfree asset):

∑
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2. STATE PRICES AND DEFLATORS

∑
=

Ψ=
N

j
jjXXi

1
),1()0(.

Property 2 :    if  X  is  a  financial  instrument on this market 
(replicable by the underlying assets) and giving for scenario j
a cash  flow X(1,j) then the initial  value of this instrument is
given by :

))1((),1()0(.
1

XDEjXDpXii
N

j
jj ==∑

=

Deflators are stochastic discounting factors depending 
on the financial scenario
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2. STATE PRICES AND DEFLATORS

Property 3 : There exists a state price / a deflator if and only 
if there is no arbitrage opportunities;  the  deflator  is unique
if the market is complete 



11

2. STATE PRICES AND DEFLATORS

Multiple periods model : discrete time model ( t=0,1,…, T)
Riskfree asset:

rateriskfreerwithrStS t =+= )1()0()( 00

Risky assets :

ditStStStS Niiii ,...,1)),(),...,,(),,(()( 21 == ωωω

STATE PRICE : 

∑
=

〉Ψ=ΨΨ=
N

j
jjjiji ttwithtStS
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0),()(),()()0( ωω
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2. STATE PRICES AND DEFLATORS
DEFLATOR :

jscenarioiftotfromfactordiscount
p

t
tD

j

j
j 0

)(
)( =

Ψ
=

Pricing : if X is a financial replicable instrument on this
market generating successive stochastic cash flows :

};,...,1);,({ Ω∈= ωω TttC

Then the initial price of X can be written :
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2. STATE PRICES AND DEFLATORS
Or with deflators :

∑∑∑
== =

==
T

t
jj

T

t

N

j
j tCtDEtDtCpX

11 1
))()(()(),()0( ω

CONCLUSION:

FAIR VALUE = Expected  value of  the  discounted  cash 
flows with respect  to  the historical  probability  measure
(no risk neutral adjustment) but using stochastic discount
factor instead of the riskfree rate.
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3. THE BINOMIAL CASE

Single period model:

Risky asset :
with probability puSS ⋅= )0()1( 11

with probability 1-pdS ⋅= )0(1

Absence of arbitrage opportunities if:
urd <+<< 10

Other form of the risky asset :
µλ +++= ru 1 µλ −++= rd 1
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3. THE BINOMIAL CASE

µ0 <λ <With condition :

volatilitypremiumrisk == µλ

Equations of the STATE PRICE :

1)1()1( 21 =Ψ++Ψ+ rrFor i=0:

121 =Ψ+Ψ duFor i=1:
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3. THE BINOMIAL CASE

Solution for the  STATE  PRICE:

)1(2))(1(
1

1 rdur
dr

+
−

=
−+

−+
=Ψ

µ
λµ

up

)1(2))(1(
)1(

2 rdur
ru

+
+

=
−+
+−

=Ψ
µ

λµdown

Safety principle :

012 =Ψ=Ψ λif

)(012 casenormalif >Ψ〉Ψ λ
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3. THE BINOMIAL CASE

Fair value in a binomial environment – single period :

If X is a financial instrument on this market with future 
stochastic cash flows given respectively by :

2211 ),1(),1( XXandXX == ωω

Then the initial fair value of X is given by :

2211)0( Ψ+Ψ= XXX
Or :
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3. THE BINOMIAL CASE

Fair value in a binomial environment – single period

Comparison with classical actuarial pricing :
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3. THE BINOMIAL CASE

Multiple periods model:
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3. THE BINOMIAL CASE

Structure of STATE PRICES in multiple periods: 

Assumption: financial product having successive  cash  flows 
depending only on the current situation of the market (no path
dependant).

1 

11 Ψ 

21 Ψ 

22 Ψ 

23 Ψ 

12 Ψ 

State price 

jscenarioifttimeatpricestatejt =Ψ
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3. THE BINOMIAL CASE

Value of the STATE PRICES:

1
2

1
1

1 −−−− ΨΨ=Ψ jtjj
tjt C

Where    j-1 = number of up (j=1,..,t+1)
t-j-1 = number of down

1−j
tCAnd: is the number of paths in the tree with 

j-1 up in t periods 
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3. THE BINOMIAL CASE

Fair valuation in multiple periods – binomial :

If X is a finacial instrument having successive cash flows
in the tree given by :

jscenarioifttimeatflowcashX jt =

Then the initial fair value of X is given by :
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Joined work with  Inmaculada DOMÍNGUEZ-FABIÁN
(Universidad de Extremadura )

Purposes : 

How to valuate pension annuities not in terms of technical basis
but in terms of market fair values; 

Influence of reversionary bonus on the level of provision;

Sensitivity of the provision with respect to financial parameters;

How to fix the technical interest rate.
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Liability model :

- Immediate lifetime annuity for an affiliate to a pension fund 
- x : initial age at time t=0
- Liability to pay: 2 cases :

1 ) fixed annual pension :  L 
jscenarioforttimeatpaytoamountL jt =,)2

( possibility to increase yearly the pension depending
on the financial performances – asset side) 

- Payment at the end of the year till death or during a fixed 
period of n years 
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Liability model (2):
Actuarial first order bases :

ratediscounttechnicali=
ttimeatyprobabilitsurvivalpxt =

Technical provision for a constant pension ( case 1):

LL jt =,

txt
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t
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Asset model :

Binomial model :
mixed financial strategy of the pension fund
between riskless asset (r= riskfree rate)
and risky asset (binomial model  u / d)

γ : part invested in the risky asset 
: part invested in the riskless asset γ−1

)10( ≤≤ γ
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Back to the liability model (case 2):
Definition of the reversionary bonus in the case 2 of
variable pensions 

Used rule of bonus : comparison each  year  between 
the effective return of the assets and the riskfree rate;
a part of this surplus is given back to the affiliate: 

: participation rate10 ≤≤ β
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4. FAIR VALUATION OF  PENSION 
LIABILITIES

Yearly rate of increase of the pension (case 2) :

If the risky asset is up :
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Final form of the liabilities (case 2 ): 

( ) 1
, 1 +−+⋅= jt
jt kLL

Where t-j+1  is the number of times
of up permitting to give a bonus. 

As expected 
THE LIABILITY DEPENDS ON TIME AND

IS STOCHASTIC
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Computation of the fair value of the liabilities / case 1 :
(fixed pension)
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Computation of the fair value of the liabilities /  case 2
(pension with reversionary bonus)

• Actuarial valuation : not so simple: liabilities not deterministic
• Fair valuation : general formula of valuation :

( ) 
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Computation of the fair value of the liabilities /  case 2
(pension with reversionary bonus)
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4. FAIR VALUATION OF PENSION 
LIABILITIES

Equilibrium relation :

i* = equilibrium constant discount rate given by :
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5. NUMERICAL ILLUSTRATION

Numerical results :

Central scenario: 
u=1.1      d=0.99
r=0.03

i=0.025
Mortality: GRM 95

Risk premium : λ =0.02
Volatility : µ = 0.06
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5. NUMERICAL ILLUSTRATION
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5. NUMERICAL ILLUSTRATION

Volatility sensitivity analysis : ( 60% in risky asset) 
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5. NUMERICAL ILLUSTRATION

Risk premium sensitivity analysis : (60% in risky asset)
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5. NUMERICAL ILLUSTRATION

Value of the equilibrium discount rate : central scenario 

1° for β = 0.5 and γ =0.6 :
i*= 2.21%

2° for β = 1 and γ =0.6 :
i*= 1.42%

3° for β = 0.9 and γ =0.4 :
i*= 2.05%

4° for β = 1 and γ =1 :
i*= 0.4%

%6
%2

=
=

µ
λ

r=3%
i=2.5%
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5. NUMERICAL ILLUSTRATION

Value of the equilibrium discount rate : other scenario
( less volatile) 

1° for β = 0.5 and γ =0.6 :
i*= 2.60%  versus 2.21%

2° for β = 1 and γ =0.6 :
i*= 2.21% versus 1.42%

3° for β = 0.9 and γ =0.4 :
i*= 2.52% versus 2.05%

4° for β = 1 and γ =1 :
i*= 1.68% versus 0.4%

%3
%1

=
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λ

r=3%
i=2.5%
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5. NUMERICAL ILLUSTRATION
EQUILIBRIUM TECHNICAL RATE(I)
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5. NUMERICAL ILLUSTRATION
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5. NUMERICAL ILLUSTRATION
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6.CONCLUSION

State  prices  and deflators  are  an easy tool to valuate 
stochastic future cash flows correlated to future financial
markets.

The binomial model is a natural first step to introduce
some uncertainty in the classical  deterministic actuarial
paradigm.

One of the most important result is the way to valuate 
bonus  and  to  define  properly  a  technical interest rate 
taking into account at the same time the liability and the 
financial risk.
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6.CONCLUSION
Methodological extensions:

More sophisticated asset models can be used in the 
same framework:

Continuous time models for the risky asset

Deterministic interest rate curve instead of
a constant riskfree rate

Uncertainty too on the interest rates
(stochastic interest rate curve models)
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6.CONCLUSION
Application extension :

A same methodology can be applied in order to valuate
and price life insurance contracts with profit.

With the model it is possible like here :

- to compute fair value
- to  find  equilibrium  values  for  the  technical 
interest rate 
but also :
- to price the surrender risk 
- to  consider  lump  sum  contracts  or  contracts
with periodical premiums and analyse guarantees
on future payments.
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6.CONCLUSION

…but this is perhaps for a next time…

THANKS 
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