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1 Introduction

Asian options are options on the average of asset prices. It is usually argued

that they provide the following advantages: (a) they are cheaper than stan-

dard European options, as the average is less volatile than the asset price

itself, (b) they prevent manipulation of the underlying asset price at the ma-

turity date and (c) they are the adequate hedging instrument for traders who

act continuously over finite periods.

Options on the ratio of the stock price to its average (or viceversa) are

particular cases of Asian options. They have recently appeared as special

types of variable purchase options (VPOs). VPOs were first issued in 1992

and have been traded since then on the Australian Stock Exchange. A VPO

is an option that gives its holder the right to buy at maturity a stochastic

number of shares that depends on the terminal stock price. This option can

have more complex features like caps and floors on the number of shares.

Handley (2000) provides a detailed description of VPOs as well as pricing

formulae, which are tested in Handley (2003). In the first article, the author

describes Asian VPOs, in which the number of shares that can be bought at

maturity depends on the average stock price. These options are shown to be

equivalent to options on the ratio of the stock price to its average. Alterna-

tively, we could define Asian VPOs in such a way that they are equivalent to

options on the ratio of the average of the stock price to the stock price itself.

In this paper we price options on these ratios using both geometric and

arithmetic (discrete- and continuous-time) means of stock prices that are

assumed to follow a lognormal process. When the average is computed on

geometric basis, these ratios are lognormally distributed at maturity, thus
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we obtain Black-Scholes-type formulae.

However, when the average is computed on arithmetic basis, the risk-

neutral distribution of these ratios is, in general, unknown and we can not

obtain closed-form expressions for the prices of these options.1 This happens

because the arithmetic average is the convolution of correlated lognormal

random variables and its distribution is not known.2

This problem has been treated in the literature in different ways. Many

studies use numerical techniques, such as the finite difference methods, as in

Kemna and Vorst (1990) and Alziari et al (1997),3 simulation, as in Kemna

and Vorst (1990) or Vázquez-Abad and Dufresne (1998),4 and the Fourier

transform, as in Carverhill and Clewlow (1990) or Ju (1997).

A number of articles provide analytical solutions that approximate the

price of these options. Examples of this literature include Yor (1992, 1993),

Geman and Yor (1993), Curran (1994), De Schepper et al (1994), Eydeland

and Geman (1995), Rogers and Shi (1995), Nielsen and Sandmann (1996,

1999, 2001), Fu et al (1999), Shirakawa (1999), and Dufresne (2000).

Jarrow and Rudd (1982) apply Edgeworth series expansion to option

pricing when the risk-neutral distribution of the underlying asset at maturity

is unknown. This method has been applied to Asian options by Turnbull and

Wakeman (1991) and Ritchken et al (1993), among others. Some authors use

only the first two moments in the Edgeworth series expansion, obtaining what

is called the Wilkinson approximation. See, for example, Levy (1992) and

Hansen and Jorgensen (2000).

Finally, Milevsky and Posner (1998) use the fact that the infinite sum

of correlated lognormal random variables is reciprocal gamma distributed to

2



obtain a closed-form solution for the value of arithmetic Asian options.5 This

formula is exact only when the average is computed continuously.

We price arithmetic Australian options using both the Wilkinson approx-

imation and the gamma distribution. We also use Monte Carlo simulation

with antithetic variables. The results show that option prices obtained with

the three methods are quite similar. This is true even when the number of

monitoring dates used to compute the average is small.

The rest of the paper is organized as follows. In Section 2 we generalize the

Black-Scholes formula for option prices. Section 3 presents closed-form ex-

pressions for the prices of geometric Australian options and Section 4 presents

approximations to the value of arithmetic ones. Section 5 summarizes and

concludes. Technical details are relegated to the Appendix.

2 The Generalized Black-Scholes Model

Uncertainty is modelled by a filtered probability space (Ω, IF, P ). The set of

trading dates is t ∈ [0, T ]. Let Z = { Zt | t ∈ [0, T ]} be the price process for

the underlying asset. The assumptions of the pricing model are as follows:

1. Markets are frictionless

(a) No transaction costs when trading the stock or the option

(b) No taxes

(c) No penalties to short selling

(d) All assets are perfectly divisible

2. Security trading is in continuous time
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3. The term structure of interest rates is flat and known with certainty.

Let β = { βt; t ∈ [0, T ] } be the value process for a banking account

defined by

dβt = rβtdt, (1)

where t ∈ [0, T ], β0 = 1 and the risk-free interest rate, r, is constant

4. The asset offers a continuous dividend yield of δ in the interval [0, T ]

5. The asset price follows a GBM process

dZt = µZZtdt + σZZtdW̃t, (2)

where (Zt, t) ∈ (0,∞) × [0, T ], µZ and σZ are constants and W̃t is a

standard Wiener process. Usually, σ2
Z is referred to as the logarithmic

variance parameter of the asset.

Under the risk-neutral probability measure, the process (2) becomes

dZt = αZZtdt + σZZtdWt

where αZ is the (constant) risk-neutral drift of the process.

The solution for this process is given by

Zt = Z0 exp
{(

αZ − 1

2
σ2

Z

)
t + σZWt

}
(3)

Therefore, Zt follows a lognormal process. Moreover, it is straightforward to

show that

[ln Zu] | Zt ∼ N
(
ln(Zt) +

(
αZ − 1

2
σ2

Z

)
(u − t), σ2

Z(u − t)
)

, u > t (4)
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Lemma 1 The moments of the variable Zt under the risk-neutral measure

are the following:

E(Zt) = Z0e
αZt

V (Zt) = [E(Zt)]
2

[
eσ2

Z
t − 1

]

Cov(Zt, Zs) = Z2
0e

αZ(t+s)
[
eσ2

Z
s − 1

]
, s < t

Proof: It follows from (3) and the properties of the lognormal distribu-

tion (see Lemma 5 in the Appendix for more details). 2

The following proposition generalizes the Black-Scholes option pricing

formula:

Proposition 1 The price at time 0 of an European call option on Z that

matures at time T and with strike price K is given by

C(Z, 0, T,K) = e−rT E(ZT )N(d1) − Ke−rT N(d2) (5)

where

d1 =
ln

(
e−αZT E(ZT )/K

)
+

(
αZ + 1

2
σ2

Z

)
T

σZ

√
T

d2 = d1 − σZ

√
T

Proof: See the Appendix. 2

The prices of European put options can be easily obtained using the put-

call parity:

P (Z, 0, T,K) = C(Z, 0, T,K) − e−rT E(ZT ) + Ke−rT (6)
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Let St denote the stock price at time t. We suppose that St follows the

risk-neutral process

dSt = (r − q)Stdt + σStdWt, (7)

where q is the continuous dividend yield of the stock and σ is a constant.

The solution for this process is given by

St = S0 exp
{(

r − q − 1

2
σ2

)
t + σWt

}
(8)

Note that application of Proposition 1 to the stock price process (7) leads

to the Black-Scholes formula adjusted by dividends, as derived by Merton

(1973).

3 Geometric Australian Options

We consider n monitoring dates so that the time interval [0, T ] is partitioned

in the following way:

{t0 = 0 < t1 < t2 < · · · < tn = T}, ti − ti−1 =
T

n
= ∆t, ∀ i = 1, · · · , n.

Let S = { Sti ≡ Si, i = 0, 1, · · · , n } be the price process for the stock. We

define the geometric mean of the n stock prices S1, · · · , Sn as

Gn ==

(
n∏

i=1

Si

) 1

n

, G0 ≡ S0

Using (8), we have

Gn = S0 exp

{(
r − q − 1

2
σ2

)
n + 1

2
∆t +

σ

n

n∑

i=1

Wti

}
(9)
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Looking at (8) and (9), and using tn = n∆t, we have

Sn

Gn

= exp

{(
r − q − 1

2
σ2

)
n − 1

2
∆t +

σ

n

[
n Wtn −

n∑

i=1

Wti

]}
(10)

Gn

Sn

= exp

{
−

(
r − q − 1

2
σ2

)
n − 1

2
∆t − σ

n

[
n Wtn −

n∑

i=1

Wti

]}
(11)

It is clear from (9)-(11) that the geometric average and both ratios are log-

normally distributed. Thus we can apply Proposition 1 to obtain the next

result.

Proposition 2 We consider European call options on Sn/Gn and Gn/Sn

that mature at time T and with strike price K. The prices at time 0 of

these options are given by expression (5), where the expected value and the

logarithmic variance of the asset at maturity are given by the following table:6

Zn E(Zn) σ2
ZT

Gn S0 exp
{(

r − q − n−1
6n

σ2
)

n+1
2n

T
}

(n+1)(n+ 1

2
)

3n2 σ2T

Sn/Gn exp
{(

r − q − n+1
6n

σ2
)

n−1
2n

T
}

(n−1)(n− 1

2
)

3n2 σ2T

Gn/Sn exp
{
−

(
r − q − 5n−1

6n
σ2

)
n−1
2n

T
}

(n−1)(n− 1

2
)

3n2 σ2T

Proof: These moments are obtained using (9)-(11), the properties of the

lognormal distribution, and Lemma 6 in the Appendix. 2

The expression obtained in this Proposition is the Black-Scholes formula

with a volatility parameter σZ and a continuous dividend yield δ = r − αZn

as given by the next table:

Zn δ

Gn

(
n−1
n+1

r + q + n−1
6n

σ2
)

n+1
2n

Sn/Gn

(
n+1
n−1

r + q + n+1
6n

σ2
)

n−1
2n

Gn/Sn

(
3n−1
n−1

r − q − 5n−1
6n

σ2
)

n−1
2n
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Note that the prices of these options do not depend on the current stock

price, S0.

Obviously, when Zn = Sn, we obtain the Black-Scholes formula which

does not depend on the partition of the time interval. When Zn = Gn, we

get the price derived by Turnbull and Wakeman (1991) and Ritchken et al

(1993).

The effect of the number of monitoring dates (n) on the expected value of

the asset is not clear, since it depends on the relationship among r, q and σ.

However, the effect of n on the logarithmic variance, σ2
ZT , is quite obvious

as can be seen in Figure 1. The parameter values are σ = 0.2 and T = 1.

[ Insert Figure 1 about here ]

We observe the following facts:

• The logarithmic variance of the stock price is constant.

• The logarithmic variance of Gn is equal to that of the stock price when

n = 1. Then it decreases with n, and converges to σ2

3
T , the logarithmic

variance of the continuous geometric average, obtained by Kemna and

Vorst (1990).

• The logarithmic variances of Sn/Gn and Gn/Sn are equal. This is due

to the relationship between the variances of a lognormal variable and

its reciprocal (see expressions (38)-(40)). This variance increases with

n and converges to σ2

3
T .

It can also be of interest to study the effect of σ and T on option prices.

We leave this analysis for the case of continuous-time means.
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Tables 1 and 2 show call and put option prices respectively (multiplied

by 100) for different cases and monitoring dates. Call prices are computed

using Proposition 2. Put prices are obtained applying expression (6). The

interest rate is 10% and the stock dividend yield is 3%. We include the stock

price (Sn) and its geometric average (Gn) as underlying assets as a reference.

In both cases, we assume that the initial stock price (S0) is 1.

[ Insert Tables 1 and 2 about here ]

We see that the value of Australian options are relatively similar to those

of geometric Asian options.

For one monitoring date, options on Gn have the same value as those on

the stock. Moreover, Australian options are equal to options on the unity,

and their values are given by exp{−rT}max{1 − K, 0}.
Interestingly, option prices do not necessarily increase with the volatility

of the stock price (σ) either. This is also true for standard geometric Asian

options. For example, from Table 1 we have that when T = 0.5, K = 0.8,

and n = 1, 000 the call option on Gn has a value of 20.548 and 20.538 for

σ = 0.2 and 0.4, respectively.7

We see that option prices do not necessarily increase with time to maturity

(T ). For example, when σ = 0.2, K = 0.8, and n = 100, Table 1 shows that

the call option on Gn/Sn has a value of 18.161 and 16.580 for maturities of

0.5 and 1.0 years, respectively.

The tables show that option prices do not change monotonically with n.

For instance, in Table 1 we have that when σ = 0.2, T = 0.5, and K = 1.1,

call options prices on Gn are 3.175, 0.905, and 0.737, when n = 1, 10 and

100, respectively.
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The effect of a change in the exercise price (K) is as expected: call prices

decrease and put prices increase with K.

As additional reference, the Black-Scholes call option prices (dividend

yield = 0) in the four cases studied in Table 1 are 24.027, 27.993, 26.081, and

3.743, and the Black-Scholes put option prices corresponding to Table 2 are

3.400, 3.753, 8.703, and 8.378, respectively.

We now define the continuous geometric average of the stock price over

the interval [0, T ] as

GT = exp

{
1

T

∫ T

0
ln(St) dt

}

Using (8), we have

GT = S0 exp

{
1

2

(
r − q − 1

2
σ2

)
T +

σ

T

∫ T

0
Wtdt

}
(12)

Looking at (8) and (12), we have

ST

GT

= exp

{
1

2

(
r − q − 1

2
σ2

)
T +

σ

T

[
T WT −

∫ T

0
Wtdt

]}
(13)

GT

ST

= exp

{
−1

2

(
r − q − 1

2
σ2

)
T − σ

T

[
T WT −

∫ T

0
Wtdt

]}
(14)

From (12)-(14) we see that the geometric average and both ratios are lognor-

mally distributed. Thus, to price options on these assets, we just need the

moments of their risk-neutral distributions.

Proposition 3 We consider European call options on ST /GT and GT /ST

that mature at time T and with strike price K. The prices at time 0 of

these options are given by expression (5), where the expected value and the

logarithmic variance of the asset at maturity are given by the following table:8
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ZT E(ZT ) σ2
ZT

ST S0 exp{(r − q)T} σ2T

GT S0 exp
{

1
2

(
r − q − 1

6
σ2

)
T

}
σ2

3
T

ST /GT exp
{

1
2

(
r − q − 1

6
σ2

)
T

}
σ2

3
T

GT /ST exp
{
−1

2

(
r − q − 5

6
σ2

)
T

}
σ2

3
T

Proof: These moments are obtained using (12)-(14), the properties of

the lognormal distribution, and Lemma 7 in the Appendix. 2

The option pricing formula given in this Proposition corresponds to a

continuous dividend yield δ = r − αZT
as given by the next table:

ZT δ

ST q

GT , ST /GT
1
2

(
r + q + 1

6
σ2

)

GT /ST
1
2

(
3r − q − 5

6
σ2

)

Notice that:

• The logarithmic variances of both ratios are equal to the one derived by

Kemna and Vorst (1990) for the continuous geometric average. The in-

tuition for this result is that, with infinite monitoring dates, the volatil-

ity of the ratio depends only on the volatility of the average. This value

increases with σ and is one third of the variance in the Black-Scholes

formula.

• The expected value of GT is S0 times the expected value of ST /GT .

• The expected values of ST /GT and GT /ST do not depend on the current

stock price, S0.
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• The expected values of GT and ST /GT are smaller than that of ST .

Figure 2 shows E(ZT ) as a function of σ. The parameter values are

r = 0.1, q = 0.03, and T = 1. We assume S0 = 1.2.

[ Insert Figure 2 about here ]

We observe that the expected values of GT and ST /GT decrease with σ,

while that of GT /ST increases with σ.9

Since the logarithmic variance of the assets studied increase with σ and

T , and their expected values also depend on these values, we have that option

prices can decrease with volatility or time to maturity. This surprising result

is described in more detail in the next lemma that shows the theta and vega

for these options.

Lemma 2

1. The theta of a call option on ZT is given by

θC(ZT ) = e−rT

[
(αZT

− r)E(ZT )N(d1) + KrN(d2) +
σZ

2
√

T
E(ZT )N ′(d1)

]

(15)

2. The theta of a put option on ZT is given by

θP (ZT ) = e−rT

[
(r − αZT

)E(ZT )N(−d1) − KrN(−d2) +
σZ

2
√

T
E(ZT )N ′(d1)

]

(16)

3. The vega of a call option on ZT is given by

νC(ZT ) = e−rT E(ZT )
√

T

[
∂αZ

∂σ

√
TN(d1) +

∂σZ

∂σ
N ′(d1)

]
(17)
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4. The vega of a put option on ZT is given by

νP (ZT ) = e−rT E(ZT )
√

T

[
∂σZ

∂σ
N ′(d1) −

∂αZ

∂σ

√
TN(−d1)

]
(18)

Proof: The results for call options are obtained differentiating with re-

spect to T or σ in Proposition 1. For put options, the generalized put-call

parity (6) is used. 2

From (15), we see that if q > 0, αZT
− r < 0 for all the assets except for

GT /ST . Consequently, the sign of theta for call options on these assets is

undetermined. If q = 0, we have that αZT
− r = 0, and the stock call price

increases with T . For GT /ST , we have that αZT
− r > 0 ⇔ r < 1

3

(
q + 5

6
σ2

)
.

In this case, an increase in T leads to a higher call option price.

For put options, theta can be positive or negative, depending on param-

eter values (see (16)). For all the assets except GT /ST , we have r−αZT
≥ 0.

Thus, if the exercise price is low enough, the put price on these assets will in-

crease with T , while for large strikes the opposite will take place. For GT /ST ,

we have that r − αZT
> 0 ⇔ r > 1

3

(
q + 5

6
σ2

)
. In this case, an increase in T

can lead to a higher put price if the exercise price is small.

Figure 3 plots geometric Australian option prices as a function of time to

maturity. The averages are computed with infinite monitoring dates. The

exercise price is K = 0.8 for calls and K = 1.2 for puts. The other parameters

are r = 0.1, q = 0.03, σ = 0.2.

[ Insert Figure 3 about here ]

We see that, in this case, the price of a call option on ST /GT increases

with T . However, the price of a call option on GT /ST decreases with T . The
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latter result is due to the fact that r > 1
3

(
q + 5

6
σ2

)
, so that αZT

− r < 0 and

∂C(.)/∂T can be negative.

Since the exercise price for the put options is relatively high (K = 1.2),

we see that the price of the put option on ST /GT decreases with T . The same

occurs for a put option on GT /ST when time to maturity is small (between

0 and 0.65 years). For higher T , the put price increases. When T > 1.5,

the put price decreases again. Interestingly, if we reduce the exercise price

to K = 1.1, the put price increases for all T .

Using Proposition 3 and Lemma 2, we obtain the following result.

Corollary 1

1. The vega of a call option on the assets studied is given by

νC(ST ) = S0

√
TN ′(d1) > 0

νC(GT ) = e−rT E(GT )
√

T

[
−1

6
σ
√

TN(d1) +
1√
3
N ′(d1)

]

νC

(
ST

GT

)
= e−rT E

(
ST

GT

)√
T

[
−1

6
σ
√

TN(d1) +
1√
3
N ′(d1)

]

νC

(
GT

ST

)
= e−rT E

(
GT

ST

)√
T

[
5

6
σ
√

TN(d1) +
1√
3
N ′(d1)

]
> 0

2. The vega of a put option on the assets studied is given by

νP (ST ) = S0

√
TN ′(d1) > 0

νP (GT ) = e−rT E(GT )
√

T

[
1

6
σ
√

TN(−d1) +
1√
3
N ′(d1)

]
> 0

νP

(
ST

GT

)
= e−rT E

(
ST

GT

)√
T

[
1

6
σ
√

TN(−d1) +
1√
3
N ′(d1)

]
> 0

νP

(
GT

ST

)
= e−rT E

(
GT

ST

)√
T

[
−5

6
σ
√

TN(−d1) +
1√
3
N ′(d1)

]
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Hence, the vega of call options on GT or ST /GT is negative iff

N ′(d1)

σN(d1)
<

1

2

√
T

3

It is also clear that

νP

(
GT

ST

)
< 0 ⇔ N ′(d1)

σN(−d1)
<

5

2

√
T

3

As shown in Figure 4, both inequalities can hold for reasonable parameter

values. This figure exhibits geometric Australian option prices as a function

of volatility. The averages are computed with infinite monitoring dates. The

exercise price are K = 0.8 and K = 1.1 for calls and puts, respectively. The

remaining parameters are: r = 0.1, q = 0.03, T = 0.1.

[ Insert Figure 4 about here ]

We see that the price of the call option on ST /GT first decreases and then

increases with volatility. Its vega is zero when σ = 0.67. As expected, the

price of the call option on GT /ST always increases with σ. The same is true

for a put option on ST /GT . However, the price of the put option on GT /ST

first decreases and then increases with volatility. Its vega reaches zero for

σ = 0.36.

To summarize the results, both call and put geometric Australian option

prices can increase and decrease with either time to maturity or volatility.

This is clearly seen in Figure 5, that shows option prices as a function of

both variables. The parameter values are: r = 0.1, q = 0.03, n = ∞. The

exercise price is K = 0.8 for calls and K = 1.1 for puts.

[ Insert Figure 5 about here ]
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Finally, Tables 1 and 2 present geometric option prices when n = ∞. Note

that the option on Sn/Gn is equivalent to the option on Gn. This happens

because we are taking S0 = 1. We see that option prices for continuous aver-

ages are almost identical to those for discrete averages with 1,000 monitoring

dates. For example, from Table 2 we have that when σ = 0.2, T = 1, K = 1.0

and n = ∞, the put options on Gn, Sn/Gn, and Gn/Sn have values of 2.935,

2.935, and 5.002, respectively, while that when n = 1, 000 those prices are

2.937, 2.933, and 5.000, respectively.

4 Arithmetic Australian Options

We define the discrete arithmetic mean of the n stock prices S1, · · · , Sn as

An =
1

n

n∑

i=1

Si, A0 ≡ S0 (19)

The continuous counterpart is given by

AT =
1

T

∫ T

0
St dt (20)

As mentioned previously, the distribution of An is unknown. Therefore, we

can not apply Proposition 1 to price options. As described in the following

sections, two ways to overcome this problem are:

• To approximate the true distribution with an alternative one.

• To approximate the distribution of An with that of AT .
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4.1 Pricing the Options with the Edgeworth / Wilkin-

son Approximation

To price options, we approximate the risk-neutral distribution of the un-

derlying asset at maturity with a tractable distribution. We perform this

approximation by expanding the true distribution around the approximating

one. This approach is called generalized Edgeworth series expansion. The

coefficients of this expansion are function of the moments of the true and

approximating distribution. Considering up to four terms in this expansion

and specifying the approximating distribution to be lognormal, we will show

that the (approximate) option price is equal to the Black-Scholes price plus

three adjustment terms. These terms depend, respectively, on the difference

between the variance, skewness, and kurtosis of the true and the lognormal

distribution. The intuition is that the first four moments of the distribution

are enough to reflect the effects of the distribution on option prices.

More concretely, we approximate the true probability distribution, F (s),

with an approximating distribution, A(s). It is assumed that both distri-

butions have continuous density functions, f(s) and a(s). We employ the

following notation:

αj(F ) =
∫

∞

−∞

sjf(s)ds

µj(F ) =
∫

∞

−∞

(s − α1(F ))jf(s)ds

Ψ(F, t) =
∫

∞

−∞

eitsf(s)ds, i =
√
−1

where αj(F ) and µj(F ) are, respectively, the j-th non-central and central

moments of F and Ψ(F, t) is the characteristic function of F .10
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Following Stuart and Ord (1987), the cumulants kj(F ) of the distribution

F are defined by the identity in t

ln Ψ(F, t) =
∞∑

j=1

kj(F )
(it)j

j!

For practical purposes, we only need the first four cumulants in the Edge-

worth series expansion. These cumulants are, respectively, the mean, the

variance, the coefficient of skewness and the excess of kurtosis:

k1(F ) = α1(F ), k2(F ) = µ2(F )

k3(F ) = µ3(F ), k4(F ) = µ4(F ) − 3µ2
2(F )

Jarrow and Rudd (1982) prove the following series expansion for f(s) around

a(s):

f(s) = a(s) +
k2(F ) − k2(A)

2!

d2a(s)

ds2
− k3(F ) − k3(A)

3!

d3a(s)

ds3

+
k4(F ) − k4(A) + 3(k2(F ) − k2(A))2

4!

d4a(s)

ds4
+ ε(s) (21)

where, by construction, k1(F ) is set equal to k1(A).

The difference between f(s) and a(s) depends on the cumulants of both

distributions with weighting factors given by the derivatives of a(s). The

terms on the right-hand side of (21) reflect any difference in variance, skew-

ness and kurtosis and variance between f(s) and a(s). The residual error,

ε(s), includes any remaining difference. For a numerical analysis of this error

term, see Section 5 in Jarrow and Rudd (1982).

Now, we employ (21) to obtain an approximate option price. Using f(s)

as the true distribution of the asset price at maturity, we obtain the expected

value at maturity of an option on this asset. Then, this expansion provides
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an approximated expected value for the option at maturity in terms of the

approximating distribution, a(s).

In a risk-neutral world, the true price of the call option, C(F ), is obtained

by discounting its expected value at the risk-free rate:

C(F ) = e−rT

∫
∞

−∞

max{ST − K, 0} dF (ST )

Using (21) and a little algebra, the call price becomes

C(F ) = C(A) + e−rT k2(F ) − k2(A)

2!
a(K) − e−rT k3(F ) − k3(A)

3!

da

dST

∣∣∣∣∣
K

+e−rT k4(F ) − k4(A) + 3(k2(F ) − k2(A))2

4!

d2a

dS2
T

∣∣∣∣∣
K

+ ε(K) (22)

where

C(A) = e−rT

∫
∞

−∞

max{ST − K, 0} dA(ST )

Although (21) is valid for any approximating distribution a(s), a natural

candidate is the lognormal one. In this case, (22) shows that the true option

price is equal to the Black-Scholes price plus three adjustment terms.

As mentioned in the introduction, the Wilkinson approximation is a par-

ticular case of the Edgeworth expansion, where just the first two cumulants

are used.

4.2 Pricing the Options with the Gamma Distribution

It is known that the infinite sum of lognormal distributions is a reciprocal

gamma distribution. Using this distribution as state-price density function,

Milevsky and Posner (1998) obtain a closed-form expression for the price of

arithmetic Asians options. The solution is the same as the Black-Scholes

formula where the normal distribution is replaced by the gamma one.
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We briefly summarize the main characteristics of the gamma distribution.

Let X be gamma distributed with parameters α and β, that is, X ∼ Γ(α, β).

Its density function is given by

g(x) =
β−αxα−1 exp

{
−x

β

}

Γ(α)
, x > 0

where Γ(x) is the gamma function, defined as

Γ(x) =
∫

∞

0
tx−1e−tdt

The mean and variance of the gamma distribution are

E(X) = αβ, V (X) = αβ2

If we define Y = 1
X

, then Y follows a reciprocal gamma distribution. Its first

two non-central moments are

M1 = E(Y ) =
1

β(α − 1)

M2 = E(Y 2) =
1

β2(α − 1)(α − 2)

The variance is given by

V (Y ) = M2 − M2
1 =

1

β2(α − 1)2(α − 2)

It is straightforward to obtain the following relationships:

α =
2M2 − M2

1

M2 − M2
1

, β =
M2 − M2

1

M1M2

(23)

Hence, to price option, we must obtain the first two risk-neutral moments

(M1,M2) of the underlying asset at maturity. Then, we compute α and β

using (23). Finally, we use the cumulative density function of the gamma

distribution as N(.) in the Black-Scholes formula.

We next compute the moments of the arithmetic mean and the ratios.
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Lemma 3

1. The moments of the variable An are given by

E(An) =
S0

n
h1(r − q) (24)

Cov(An, Sn) =
S0

n
E(Sn)[h1(r − q + σ2) − h1(r − q)] (25)

V (An) =
(

S0

n

)2

[2f1(r − q + σ2)[h1(2(r − q) + σ2) − h1(r − q)]

−h1(2(r − q) + σ2) − [h1(r − q)]2] (26)

2. The moments of the variable Sn/An, n ≥ 2 can be approximated by

E
(

Sn

An

)
' E(Sn)

E(An)
− 1

(E(An))2
Cov(An, Sn) +

E(Sn)

(E(An))3
V (An)

V
(

Sn

An

)
'

(
E(Sn)

E(An)

)2 (
V (Sn)

(E(Sn))2
+

V (An)

(E(An))2
− 2

Cov(An, Sn)

E(Sn)E(An)

)

with E(An),Cov(An, Sn) and V (An) as given by (24)-(26).

3. The moments of the variable An/Sn, n ≥ 2 are given by

E
(

An

Sn

)
=

1

n
exp{−n(r − q − σ2)∆t} h1(r − q − σ2) (27)

V
(

An

Sn

)
=

(
1

n

)2

exp{−n(2(r − q) − 3σ2)∆t}

×[2f1(r − q − σ2)[h1(2(r − q) − 3σ2) − h1(r − q − 2σ2)]

−h1(2(r − q) − 3σ2) − exp{−nσ2∆t}h2
1(r − q − σ2)](28)

with

h1(x) =
n∑

i=1

exi∆t = f1(x)
(
exn∆t − 1

)
, x 6= 0, h1(0) = n (29)

f1(x) =
ex∆t

ex∆t − 1
, x 6= 0 (30)
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Proof: See the Appendix. 2

Remark 1 Several particular cases can be highlighted:

1. If r = q − σ2, the moments of the variable An are given by

E(An) =
S0

n
h1(−σ2)

Cov(An, Sn) =
S0

n
E(Sn)[n − h1(−σ2)]

V (An) = 2
(

S0

n

)2

f1(σ
2)e−(n+1)σ2∆t

n∑

i=1

(
cosh(σ2i∆t) − 1

)

2. If r = q + σ2, the moments of the variable An/Sn, n ≥ 2 are given by

E
(

An

Sn

)
= 1

V
(

An

Sn

)
=

(
1

n

)2 [
(2f1(σ

2) − 1)
(
e−σ2∆th1(σ

2) − n
)
− n(n − 1)

]

Proof: See the Appendix. 2

Lemma 4

1. The moments of the variable AT are given by

E(AT ) =
S0

T
Φ(r − q) (31)

Cov(AT , ST ) =
S0

T
E(ST )[Φ(r − q + σ2) − Φ(r − q)] (32)

V (AT ) =
(

S0

T

)2
[
2
Φ(2(r − q) + σ2) − Φ(r − q)

r − q + σ2
− (Φ(r − q))2

]

(33)
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2. The moments of the variable ST /AT can be approximated by

E
(

ST

AT

)
' E(ST )

E(AT )
− 1

(E(AT ))2
Cov(AT , ST ) +

E(ST )

(E(AT ))3
V (AT )

V
(

ST

AT

)
'

(
E(ST )

E(AT )

)2 (
V (ST )

(E(ST ))2
+

V (AT )

(E(AT ))2
− 2

Cov(AT , ST )

E(ST )E(AT )

)

with E(AT ),Cov(AT , ST ) and V (AT ) as given by (31)-(33).

3. The moments of the variable AT /ST are given by

E
(

AT

ST

)
=

1

T
Φ(σ2 − (r − q)) (34)

V
(

AT

ST

)
=

(
1

T

)2

exp{−(2(r − q) − 3σ2)T}

×
[
2
Φ(2(r − q) − 3σ2) − Φ(r − q − 2σ2)

r − q − σ2

− exp{−σ2T}Φ2(r − q − σ2)
]

(35)

Proof: It is similar to that of Lemma 3 and it is omitted. 2

Remark 2 Several particular cases can be highlighted:

1. If r = q − σ2, the moments of the variable AT are given by

E(AT ) =
S0

T
Φ(−σ2)

Cov(AT , ST ) =
S0

T
E(ST )[T − Φ(−σ2)]

V (AT ) = 2
(

S0

T

)2 e−σ2T

σ4
(sinh(σ2T ) − σ2T )

2. If r = q + σ2, the moments of the variable AT /ST are given by

E
(

AT

ST

)
= 1

V
(

AT

ST

)
=

(
1

T

)2
[
2

Φ(σ2) − T

σ2
− T 2

]

with Φ(.) as given by (55).
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Proof: See the Appendix. 2

Tables 3 and 4 show arithmetic call and put option prices (multiplied by

100) for different monitoring dates. The interest rate is 10% and the stock

dividend yield is 3%. We price options on An, Sn/An and An/Sn with three

methods: Monte Carlo simulation,11 Wilkinson approximation, and gamma

distribution.

[ Insert Tables 3 and 4 about here ]

In the tables, we see that derivative prices with the three methods are very

close. For example, in Table 3 we have that when σ = 0.20, T = 0.5, K = 0.8,

and n = 1, 000, the values of call options on An/Sn are 18.319, 18.324, and

18.321, respectively. Thus, Edgeworth expansions do not seem to be needed.

To price options on Sn/An with both the Wilkinson approximation and

the gamma distribution, we have computed its moments using the approxi-

mation of Mood et al (1974) (see Lemma 10 in the Appendix). In the tables

we see that those prices are very similar to the ones obtained with Monte

Carlo, so that the approximations seem to work pretty well. For example,

in Table 3 we see that when σ = 0.2, T = 0.5, K = 0.8, and n = 1, 000, the

values of call options using the Wilkinson approximation and the gamma dis-

tribution are 20.375 and 20.374, respectively, while the value obtained with

Monte Carlo simulation is 20.377.

When the average is computed in continuous time (number of monitoring

dates = ∞) we cannot use Monte Carlo simulation. However, as mentioned

before, using 1,000 monitoring dates produces option prices very similar to

those using continuous average. In Table 4 we see that the values of put
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options on Sn/An using the Wilkinson approximation and the gamma distri-

bution are 8.863 and 8.887, respectively, for both 1,000 and ∞ monitoring

dates.

To understand better why the three method produce very similar results,

we plot the risk-neutral probability density function of the arithmetic stock

price average in Figure 6.

[ Insert Figure 6 about here ]

The parameter values are: r = 0.1, q = 0, σ = 0.2, T = 1, S0 = 100 and

n = ∞. The expected value of the average price is 105.17, and the variance

152.74. For n = ∞ the true density function is reciprocal gamma, with

parameters α = 74.42 and β = 1.29E-4. This function is approximated with

a lognormal distribution with the same moments. The density function is

also estimated with Monte Carlo simulation, using a set of 50 runs of 10,000

paths with 1,000 time steps. We see that, for the parameter values used,

the density functions are remarkably similar, hence the price of options on

arithmetic stock prices must be close.

5 Conclusions

Australian options are options on the ratio of the stock price to its average

or viceversa. They show up in variable purchase options, recently studied by

Handley (2000, 2003).

If the stock price follows a geometric Brownian motion and the average

is defined on geometric basis, these ratios also follow a geometric Brownian
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motion. Thus, we are able to obtain closed-form expressions for the price of

the options. However, when the average is defined on arithmetic basis, the

risk-neutral distributions of these ratios at maturity are unknown. Hence, to

price the options we use a particular case of Edgeworth expansion (known

as Wilkinson approximation) as well as a gamma approximation (following

Milevsky and Posner (1998)). We compare the results with those obtained

with Monte Carlo simulations, and we find that option prices are very similar

in the three cases. Hence, in practice, it does not seem to be necessary to

use high order moments in the Edgeworth expansion nor to require a large

number of monitoring dates in the gamma approximation for pricing these

claims.
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Appendix

The following Lemma specifies several features of the lognormal distribution

that will be useful to find later results:

Lemma 5

1. Let Y = ln(X) be a normal random variable with mean m and variance

s2. Then, X follows a lognormal distribution, that is, X ∼ Λ(m, s2).

Its density function is given by

f(x) =
1

sx
√

2π
exp



−1

2

(
ln x − m

s

)2


 , x > 0 (36)

Moreover, it is verified that

E(X) = exp
{
m +

1

2
s2

}
(37)

V (X) = [E(X)]2
[
es2 − 1

]
(38)

E(X−1) = exp{−2m} E(X) (39)

V (X−1) = [E(X−1)]2
[
es2 − 1

]
(40)

2. The expectation of the truncated lognormal variable

X̃ =





X if X ≥ K

0 if X < K
, K ∈ IR+

is given by

E(X̃) = E(X) N(s − D), D =
ln K − m

s

where N(.) denotes the distribution function of a standard normal vari-

able.
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Proof:

1. For proving expressions (37)-(38), see Johnson and Kotz (1970), p. 115.

As X−1 = e−Y , application of (37)-(38) leads to (39)-(40).

2. E(X̃) is obtained using (36) and a little of algebra. 2

Proof of Proposition 1

The option payoff can be split in two components, the “contingent exercise

payment” and the “contingent receipt of the stock”. The payoffs for these

claims are, respectively,

C1(Z, T, T.K) =





−K if ZT ≥ K

0 if ZT < K
, C2(Z, T, T,K) =





ZT if ZT ≥ K

0 if ZT < K

Then, the two components of the option are given by

C1(Z, 0, T,K) = E
[
e−rT C1(Z, T, T,K) | Ft

]
= −Ke−rT P (ZT ≥ K) (41)

C2(Z, 0, T,K) = E
[
e−rT C2(Z, T, T,K) | Ft

]
= e−rT E[ZT | ZT ≥ K] (42)

Equation (4) implies that

P (ZT ≥ K) = N(d2), d2 =
ln(e−αZT E(ZT )/K) +

(
αZ − 1

2
σ2

Z

)
T

σZ

√
T

(43)

Part 2 in Lemma 5 and a little algebra leads to

E[ZT | ZT ≥ K] = E(ZT )N(d1), d1 = d2 + σZ

√
T (44)

Including (43)-(44) into (41)-(42) provides the final expression for the option

price. 2
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We now state two lemmas that will be useful to obtain the moments of

the geometric price average and its associated ratios, for both discrete and

continuous monitoring.

Lemma 6 Given the Brownian motions Wti , i = 1, · · · , n, it is verified that

V

(
n∑

i=1

Wti

)
=

(n + 1)
(
n + 1

2

)
n

3
∆t

V

(
n Wtn −

n∑

i=1

Wti

)
=

(n − 1)
(
n − 1

2

)
n

3
∆t

Proof:

For n ≥ 2, we have

V

(
n∑

i=1

Wti

)
= V

(
n−1∑

i=1

Wti + Wtn

)
= V

(
n−1∑

i=1

Wti

)
+ tn + 2

n−1∑

i=1

Cov(Wti ,Wtn)

= V

(
n−1∑

i=1

Wti

)
+ n∆t + 2

n−1∑

i=1

i∆t = V

(
n−1∑

i=1

Wti

)
+ n2∆t

By induction, we get

V

(
n∑

i=1

Wti

)
=

n∑

i=1

i2 ∆t =
(n + 1)

(
n + 1

2

)
n

3
∆t

V

(
n Wtn −

n∑

i=1

Wti

)
= V

(
n−1∑

i=1

[Wtn − Wti ]

)

= V

(
n−1∑

i=1

Wti

)
+

n−1∑

i=1

n−1∑

i=1

Cov(Wtn ,Wtn − 2Wti)

= V

(
n−1∑

i=1

Wti

)
=

n−1∑

i=1

i2 ∆t =
n

(
n − 1

2

)
(n − 1)

3
∆t

2
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Lemma 7 Given the Brownian motions Wt, t ∈ [0, T ], it is verified that

V

(∫ T

0
Wtdt

)
= V

(
T WT −

∫ T

0
Wtdt

)
=

T 3

3

Proof:

Integrating by parts, we have
∫ T

0
(T − t)dWt =

∫ T

0
Wtdt,

∫ T

0
tdWt = TWT −

∫ T

0
Wtdt

Then, we get

V

(∫ T

0
Wtdt

)
= V

(∫ T

0
(T − t)dWt

)
=

∫ T

0
(T − t)2dt = −(T − t)3

3

∣∣∣∣∣

T

0

=
T 3

3

V

(
TWT −

∫ T

0
Wtdt

)
= V

(∫ T

0
tdWt

)
=

∫ T

0
t2dt =

t3

3

∣∣∣∣∣

T

0

=
T 3

3

2

The following two lemmas are used to obtain the moments of the arith-

metic price average (discrete and continuous) and its associated ratios.

Lemma 8 For i, j = 1, 2, · · · , n and k ∈ IR, we have

E(Sk
i ) = Sk

0 exp

{
k

(
r − q +

k − 1

2
σ2

)
i∆t

}
(45)

E(SiS
k
j ) = E(Si)E(Sk

j ) exp{kσ2 min{i, j}∆t} (46)

E(SiSjS
k
n) = E(SiSj)E(Sk

n) exp{kσ2(i + j)∆t} (47)

Moreover, for k ∈ IR, we have

E(AnS
k
n) =

S0

n
E(Sk

n) h1(r
∗) (48)

E(A2
nS

k
n) =

(
S0

n

)2

E(Sk
n)[2f1(r

∗ + σ2)(h1(2r
∗ + σ2) − h1(r

∗)) − h1(2r
∗ + σ2)]

(49)

where r∗ = r − q + kσ2 and h1(.) and f1(.) as given by (29)-(30).
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Proof:

E(Sk
i ) is obtained applying (37) to (8).

Using (8), (45), and a little algebra, we have, for a, b, k ∈ IR,

E(Sa
i Sb

jS
k
n) = E(Sa

i )E(Sb
j )E(Sk

n) exp{[ab min{i, j} + k(ai + bj)]σ2∆t}

For k = 0, we have

E(Sa
i Sb

j ) = E(Sa
i )E(Sb

j ) exp{abσ2 min{i, j}∆t} (50)

and, then,

E(Sa
i Sb

jS
k
n) = E(Sa

i Sb
j )E(Sk

n) exp{kσ2(ai + bj)∆t} (51)

Using (50) with a = 1, b = k and (51) with a = b = 1 provides E(SiS
k
j ) and

E(SiSjS
k
n), respectively.

• Mean of AnS
k
n: Apply (19), (45) for k = 1, and (46) for j = n.

• Mean of A2
nS

k
n: Applying (19) and (47), we get

E(A2
nS

k
n) =

(
1

n

)2

E(Sk
n)z∗n, z∗n =

n∑

i,j=1

E(SiSj)e
kσ2(i+j)∆t (52)

After some algebra, we get the recurrence law

z∗n = z∗n−1+S2
0

[
2f1(r

∗ + σ2)
(
e(2r∗+σ2)n∆t − er∗n∆t

)
− e(2r∗+σ2)n∆t

]
, z∗0 = 0

with f1(.) as given by (30).

Applying this recurrence law for different values of n, we obtain

z∗n = S2
0

[
2f1(r

∗ + σ2)(h1(2r
∗ + σ2) − h1(r

∗)) − h1(2r
∗ + σ2)

]

Plugging this expression into (52), we get the final value for E(A2
nS

k
n).

2
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Lemma 9 For k ∈ IR, we have

E(AT Sk
T ) =

S0

T
E(Sk

T )Φ(r∗) (53)

E(A2
T Sk

T ) = 2
(

S0

T

)2

E(Sk
T )

Φ(2r∗ + σ2) − Φ(r∗)

r∗ + σ2
(54)

with

Φ(x) =
exp{xT} − 1

x
, x 6= 0, Φ(0) = T (55)

and r∗ as given by Lemma 8.

Proof:

E(AT Sk
T ) is obtained using (20) and applying (45) with k = 1 and (46)

with j = n.

To compute E(A2
T Sk

T ), use (20) and apply (46) with k = 1 and (47). 2

The following Lemma will be useful to compute the moments of ratios

involving arithmetic average asset prices:

Lemma 10 Let X and Y be two random variables. Then, it is verified that

E
(

X

Y

)
' E(X)

E(Y )
− 1

(E(Y ))2
Cov(X,Y ) +

E(X)

(E(Y ))3
V (Y )

V
(

X

Y

)
'

(
E(X)

E(Y )

)2 (
V (X)

(E(X))2
+

V (Y )

(E(Y ))2
− 2

Cov(X,Y )

E(X)E(Y )

)

Proof: See Mood et al (1974), p. 181. 2

Proof of Lemma 3

1. Moments of the arithmetic average An

(a) Mean of An:

Apply (48) with k = 0.
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(b) Covariance of An with Sn:

Apply (48) for k = 1 and (24).

(c) Variance of An:

Apply (49) for k = 0 and (24).

2. Moments of the variable Sn/An:

Apply part 2 in Lemma 10 with X = Sn, Y = An.

3. Moments of the variable An/Sn

(a) Mean of An/Sn:

Apply (45) for i = n, k = −1 and (48) for k = −1.

(b) Variance of An/Sn:

Apply (45) for i = n, k = −2, (49) for k = −2 and (27). 2

Proof of Remark 1

1. Replace r = q − σ2 into (24)-(25) to obtain E(An) and Cov(An, Sn).

To get V (An), we will need the following relationships, satisfied by h1(.)

and f1(.) (see (29)-(30)):

h1(−a) = exp{−(n + 1)a∆t}h1(a) (56)

f1(−a) = − exp{−a∆t}f1(a) (57)

1 + h1(a) = f1(−a)
[
1 − e(n+1)a∆t

]
(58)

f1(b) = exp{(b − a)∆t}ea∆t − 1

eb∆t − 1
f1(a) (59)

Looking at (26), we need to compute

f1(r − q + σ2)[h1(2(r − q) + σ2) − h1(r − q)]
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Defining x = r − q + σ2 and using (59), this expression becomes

f1(x)f1(x−σ2)

[
ex∆t e(x−σ2)∆t − 1

e(2x−σ2)∆t − 1

(
e(2x−σ2)n∆t − 1

)
−

(
e(2x−σ2)∆t − 1

)]

Taking limits when x → 0 and applying (57) and some algebra, we

obtain

f1(σ
2)

[
h1(−σ2) − ne−(n+1)σ2∆t

]

Replacing this result into (26) and using (56) and (58), we obtain

V (An) =
(

S0

n

)2

f1(σ
2)e−(n+1)σ2∆t[h1(σ

2) − 2n + h1(−σ2)]

It can be seen that, as expected, this variance is positive since

h1(σ
2) − 2n + h1(−σ2) = 2

n∑

i=1

(
cosh(σ2i∆t) − 1

)
> 0

2. Replace r = q + σ2 into (27) and use h1(0) = n to obtain E(An/Sn).

To get V (An/Sn), define x = r − q − σ2 and apply a similar procedure

as in part 1 of this remark. 2

Proof of Remark 2

1. Replace r = q − σ2 into (31)-(32) to obtain E(AT ) and Cov(AT , ST ).

Applying the L’Hôpital’s rule and using the relationship Φ(−x) =

e−xT Φ(x), we obtain

V (AT ) =
(

S0

T

)2 e−σ2T

σ2
[Φ(σ2) − 2T + Φ(−σ2)]

It can be seen that, as expected, this variance is positive since

Φ(σ2) − 2T + Φ(−σ2) =
2

σ2
[sinh(σ2T ) − σ2T ] > 0

2. Replace r = q + σ2 into (34) and use Φ(0) = T to obtain E(AT /ST ).

To compute V (AT /ST ), apply the L’Hôpital’s rule. 2
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Footnotes

1. As will be indicated later, the distribution of the continuous-time average is known,

allowing us to obtain exact analytical expressions for option prices.

2. It may be worth noting that if these variables were perfectly correlated, then the

average would be lognormal. Alternatively, if these variables are i.i.d., applying the

central limit theorem, the distribution of the average would converge to the normal

one.

3. Other examples are Dewynne and Wilmott (1995a, 1995b), He and Takahashi (1995-

96), Zvan et al (1998) or Shreve and Vec̃er (2000).

4. See also Haykov (1993), Corwin et al (1996) and Nielsen and Sandmann (1996).

5. Dufresne (1990) and Yor (1993) are examples of papers that deal with the gamma

distribution.

6. For completeness, this table includes the geometric average.

7. Recall that these prices have been multiplied by 100.

8. For completeness, this table includes the stock price and its geometric average.

The formula for the geometric Asian option was first derived by Kemna and Vorst

(1990).

9. It can be shown that for σ large enough (σ >
√

6/5
√

2T ln(S0) + 3(r − q)), this

expected value is higher than E(ST ).

10. Analogous notation is employed for the approximating distribution A.

11. We use 10,000 simulations and antithetic variables to reduce standard errors.

41



Table 1. Geometric Call option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 0.8 Sn 22.576 22.576 22.576 22.576 22.576

Gn 22.576 20.696 20.561 20.548 20.546

Sn/Gn 19.025 20.400 20.531 20.545 20.546

Gn/Sn 19.025 18.133 18.161 18.166 18.166

20 1 0.8 Sn 25.187 25.187 25.187 25.187 25.187

Gn 25.187 21.361 21.084 21.056 21.053

Sn/Gn 18.097 20.756 21.023 21.050 21.053

Gn/Sn 18.097 16.491 16.580 16.593 16.594

40 0.5 0.8 Sn 24.801 24.801 24.801 24.801 24.801

Gn 24.801 20.766 20.558 20.538 20.536

Sn/Gn 19.025 20.332 20.514 20.534 20.536

Gn/Sn 19.025 20.266 20.908 20.979 20.987

20 0.5 1.1 Sn 3.175 3.175 3.175 3.175 3.175

Gn 3.175 0.905 0.737 0.721 0.719

Sn/Gn 0 0.549 0.701 0.717 0.719

Gn/Sn 0 0.282 0.374 0.384 0.385

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on Sn and Gn we take S0 = 1. For options on Gn, derivative

prices can be computed with the Merton’s (1973) formula when n = 1, and

with the Kemna and Vorst’s (1990) formula when n = ∞.
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Table 2. Geometric Put option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 1.0 Sn 3.930 3.930 3.930 3.930 3.930

Gn 3.930 2.591 2.439 2.423 2.422

Sn/Gn 0 2.250 2.405 2.420 2.422

Gn/Sn 0 3.321 3.516 3.535 3.537

20 1 1.0 Sn 4.639 4.639 4.639 4.639 4.639

Gn 4.639 3.135 2.955 2.937 2.935

Sn/Gn 0 2.732 2.915 2.933 2.935

Gn/Sn 0 4.724 4.976 5.000 5.002

40 0.5 1.0 Sn 9.277 9.277 9.277 9.277 9.277

Gn 9.277 6.149 5.763 5.724 5.719

Sn/Gn 0 5.283 5.676 5.715 5.719

Gn/Sn 0 5.314 5.493 5.508 5.510

20 0.5 1.1 Sn 9.300 9.300 9.300 9.300 9.300

Gn 9.300 8.753 8.712 8.714 8.713

Sn/Gn 9.512 8.688 8.710 8.713 8.713

Gn/Sn 9.512 10.691 10.759 10.765 10.766

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on Sn and Gn we take S0 = 1. For options on Gn, derivative

prices can be computed with the Merton’s (1973) formula when n = 1, and

with the Kemna and Vorst’s (1990) formula when n = ∞.
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Table 3. Arithmetic Call option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 0.8 An MC 22.551 20.737 20.731 20.723 -

An W 22.576 20.885 20.729 20.714 20.712

An GD 22.535 20.883 20.728 20.711 20.711

Sn/An MC 19.025 20.329 20.381 20.377 -

Sn/An W 19.025 20.209 20.360 20.375 20.377

Sn/An GD 19.025 20.208 20.358 20.374 20.375

An/Sn MC 19.025 18.332 18.317 18.319 -

An/Sn W 19.025 18.389 18.330 18.324 18.324

An/Sn GD 19.025 18.388 18.327 18.321 18.321

20 1 0.8 An MC 25.089 21.431 21.366 21.387 -

An W 25.187 21.736 21.418 21.387 21.384

An GD 25.059 21.716 21.404 21.373 21.370

Sn/An MC 18.097 20.642 20.730 20.766 -

Sn/An W 18.097 20.376 20.682 20.713 20.717

Sn/An GD 18.097 20.366 20.667 20.698 20.701

An/Sn MC 18.097 16.841 16.884 16.899 -

An/Sn W 18.097 16.964 16.887 16.880 16.883

An/Sn GD 18.097 16.947 16.862 16.855 16.857

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 3. Arithmetic Call option prices (cont.).

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
40 0.5 0.8 An MC 24.687 21.141 21.111 21.206 -

An W 24.801 21.468 21.188 21.161 21.158

An GD 24.400 21.358 21.099 21.074 21.071

Sn/An MC 19.025 19.853 20.011 19.987 -

Sn/An W 19.025 19.641 19.918 19.947 19.951

Sn/An GD 19.025 19.562 19.819 19.846 19.849

An/Sn MC 19.025 21.432 21.620 21.535 -

An/Sn W 19.025 21.276 21.569 21.599 21.620

An/Sn GD 19.025 21.213 21.489 21.517 21.535

20 0.5 1.1 An MC 3.141 0.802 0.756 0.757 -

An W 3.176 0.933 0.778 0.761 0.759

An GD 3.198 0.980 0.802 0.785 0.782

Sn/An MC 0 0.593 0.612 0.682 -

Sn/An W 0 0.528 0.681 0.698 0.699

Sn/An GD 0 0.549 0.705 0.721 0.722

An/Sn MC 0 0.389 0.404 0.413 -

An/Sn W 0 0.302 0.387 0.396 0.401

An/Sn GD 0 0.320 0.409 0.419 0.424

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 4. Arithmetic Put option prices.

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
20 0.5 1.0 An MC 3.930 2.331 2.417 2.387 -

An W 3.930 2.530 2.387 2.372 2.371

An GD 3.868 2.511 2.371 2.357 2.356

Sn/An MC 0 2.365 2.477 2.512 -

Sn/An W 0 2.342 2.490 2.505 2.506

Sn/An GD 0 2.330 2.475 2.491 2.494

An/Sn MC 0 3.328 3.440 3.408 -

An/Sn W 0 3.176 3.417 3.440 3.451

An/Sn GD 0 3.175 3.415 3.440 3.449

20 1 1.0 An MC 4.639 2.821 2.771 2.872 -

An W 4.639 3.038 2.875 2.859 2.857

An GD 4.479 2.991 2.834 2.819 2.817

Sn/An MC 0 3.043 2.994 3.055 -

Sn/An W 0 2.913 3.086 3.103 3.105

Sn/An GD 0 2.884 3.051 3.068 3.069

An/Sn MC 0 4.736 4.854 4.817 -

An/Sn W 0 4.436 4.775 4.809 4.833

An/Sn GD 0 4.433 4.770 4.803 4.827

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Table 4. Arithmetic Put option prices (cont.).

Parameters Asset Number of monitoring dates (n)

σ(%) T K Zn 1 10 100 1,000 ∞
40 0.5 1.0 An MC 9.277 5.465 5.402 5.554 -

An W 9.277 5.874 5.525 5.490 5.487

An GD 8.971 5.792 5.457 5.423 5.419

Sn/An MC 0 5.855 6.000 5.988 -

Sn/An W 0 5.837 6.202 6.238 6.242

Sn/An GD 0 5.794 6.147 6.182 6.186

An/Sn MC 0 5.078 5.202 5.201 -

An/Sn W 0 4.880 5.193 5.224 5.290

An/Sn GD 0 4.822 5.124 5.154 5.217

20 0.5 1.1 An MC 9.300 8.571 8.581 8.576 -

An W 9.300 8.613 8.589 8.588 8.588

An GD 9.322 8.639 8.613 8.611 8.611

Sn/An MC 9.512 8.838 8.827 8.829 -

Sn/An W 9.512 8.858 8.862 8.863 8.863

Sn/An GD 9.512 8.879 8.886 8.887 8.887

An/Sn MC 9.512 10.586 10.626 10.617 -

An/Sn W 9.512 10.453 10.603 10.618 10.623

An/Sn GD 9.512 10.472 10.625 10.640 10.646

Prices are multiplied by 100. The interest rate is 10% and the dividend yield

3%. For options on An we take S0 = 1. MC, W and GD refer to Monte Carlo

simulation, Wilkinson approximation and gamma distribution, respectively.
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Figure 1: Plot of the logarithmic variance (σ2
ZT ) as function of n. The

parameter values are σ = 0.2 and T = 1. The figure depicts the logarithmic

variance of the stock price (line marked with the sign “+”), Gn (dashed

line), GT (solid line), Sn/Gn and Gn/Sn (dotted-dashed line). These values

are given by the following table:

Zn σ2
ZT

Sn σ2T

Gn

(n+1)(n+ 1

2
)

3n2 σ2T

Sn/Gn

(n−1)(n− 1

2
)

3n2 σ2T

Gn/Sn

(n−1)(n− 1

2
)

3n2 σ2T
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Figure 2: Plot of the expected value E(ZT ) as function of σ2. The

parameter values are r = 0.1, q = 0.03, σ = 0.2 and T = 1. We assume

S0 = 1.2. The figure depicts the expected values of the stock price (line

marked with the sign “+”), GT (dashed line), ST /GT (dotted-dashed line),

and GT /ST (solid line). These values are given by the following table:

ZT E(ZT )

ST S0 exp{(r − q)T}
GT S0 exp

{
1
2

(
r − q − 1

6
σ2

)
T

}

ST /GT exp
{

1
2

(
r − q − 1

6
σ2

)
T

}

GT /ST exp
{
−1

2

(
r − q − 5

6
σ2

)
T

}
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Figure 3: Geometric Australian option prices as a function of time

to maturity. The exercise price is K = 0.8 for calls and K = 1.2 for puts.

The other parameter values are: r = 0.1, q = 0.03, σ = 0.2, and n = ∞.
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Figure 4: Geometric Australian option prices as a function of volatil-

ity (σ). The exercise price is K = 0.8 for calls and K = 1.1 for puts. The

other parameter values are: r = 0.1, q = 0.03, T = 0.1, and n = ∞.
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Figure 5: Geometric Australian option prices as a function of time

to maturity and volatility (σ). The exercise price is K = 0.8 for the

call option and K = 1.1 for the put option. The other parameter values are:

r = 0.1, q = 0.03, and n = ∞.

52



0

0.01

0.02

0.03

60 80 100 120 140
 A(T) 

Probability density function

Reciprocal Gamma
Lognormal

Monte Carlo

Figure 6: Risk-neutral probability density function of the arith-

metic stock price average at maturity. The parameter values are:

r = 0.1, q = 0, σ = 0.2, T = 1, S0 = 100 and n = ∞. The expected

value of the average price is 105.17, and the variance 152.74. For n = ∞ the

true density function is reciprocal gamma, with parameters α = 74.42 and

β = 1.29E-4. This function is approximated with a lognormal distribution

with the same moments. The density function is also estimated with Monte

Carlo simulation, using a set of 50 runs of 10,000 paths with 1,000 time steps.
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