Trade Adjustment Dynamics and the Welfare Gains from Trade

George Alessandria Horag Choi Kim J. Ruhl U. Rochester Monash University NYU Stern

May 2015 | BBVA Foundation Workshop

► Aggregate trade changes *gradually* following a change in trade barriers or relative prices (macro dynamics)

- ► Aggregate trade changes *gradually* following a change in trade barriers or relative prices (macro dynamics)
- ▶ Often attributed to producers' decisions to access or expand their presence in foreign markets (micro dynamics)

- ► Aggregate trade changes *gradually* following a change in trade barriers or relative prices (macro dynamics)
- ▶ Often attributed to producers' decisions to access or expand their presence in foreign markets (micro dynamics)
- ▶ Recent studies of trade barriers lack micro/macro dynamics
 - ▶ A rationale is that transition will lower gains (upper bound)

- ► Aggregate trade changes *gradually* following a change in trade barriers or relative prices (macro dynamics)
- ▶ Often attributed to producers' decisions to access or expand their presence in foreign markets (micro dynamics)
- $\blacktriangleright\,$ Recent studies of trade barriers lack micro/macro dynamics

▶ A rationale is that transition will lower gains (upper bound)

- ► Today: Quantify the gains from a change in tariffs in a dynamic model where the macro-dynamics arise from micro-dynamics
 - ▶ Transitions substantially increase gains from liberalization

Overview

- ▶ Develop GE model with producer level export dynamics
- \blacktriangleright General model of fixed-variable trade *cost* technology
 - $\blacktriangleright\,$ Fixed startup and continuation cost
 - $\blacktriangleright\,$ Stochastic ice berg cost that falls with time in the market
- ► Estimate exporting technology
- ▶ Estimate the gains from trade

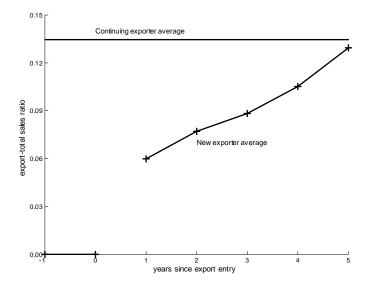
- ▶ Micro trade dynamics
 - $\blacktriangleright\,$ Need time, resources, and luck to become an efficient exporter
 - $\blacktriangleright\,$ Model: 2 years to turn profit, 5 years to break even
- ▶ Micro dynamics generate macro dynamics
 - ▶ Gradual trade growth; consumption overshooting
- ▶ Micro dynamics matter for welfare
 - ▶ Gain 1.5X larger than sunk-cost model
 - ▶ Gain 2.8X larger than no-micro-dynamics model
- ▶ Key tradeoff: accumulating varieties vs. exporters

Overview

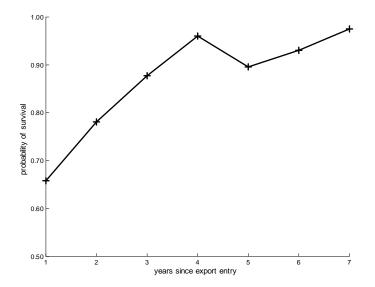
- ▶ Micro exporter dynamics
- ► Model
- ▶ Parameters
- ► Results
 - ► Estimates of export technology
 - $\blacktriangleright\,$ Transition dynamics after fall in tariffs

Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- **3.** Exporting is persistent (83% survival)


Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- **3.** Exporting is persistent (83% survival)
- 4. New exporters start with low *export intensity*


 $exs_{it} = exports_{it}/total \ sales_{it}$

- 5. New exporters take time (5yrs) to become like average exports
- 6. New exporters have high exit rates

Export intensity of Colombian exporters (Ruhl & Willis, 08)

Survival probability of Colombian new exporters (Ruhl & Willis, 08)

- \blacktriangleright General equilibrium, infinite horizon, 2 country $\{H,F\}$ model
- ▶ Idiosyncratic uncertainty, no aggregate uncertainty
- ▶ Heterogeneous plants producing differentiated tradable goods
 - ► Monopolistic competitors
 - $\blacktriangleright\,$ Fixed export costs: startup and continuation
 - ▶ Plants are created: endogenous mass of firms
- $\blacktriangleright\,$ Exporter life cycle: time to build demand/lower marginal export costs
- ▶ Final C/I good combines available differentiated tradables

Model

- \blacktriangleright Mass N_t, N_t^* differentiated H & F intermediates
- $\blacktriangleright\,$ Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: $z, \phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ► Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - Measure of establishments: $\varphi_{i,t}(z,\xi,f)$

Model

- ▶ Mass N_t, N_t^* differentiated H & F intermediates
- ▶ Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: $z, \phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ► Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - ▶ Measure of establishments: $\varphi_{i,t}(z,\xi,f)$
- ▶ Free entry: hire f_E workers draw $\phi_E(z)$ in t+1
- ▶ Exogenous survival: $n_s(z)$
- ▶ Timing: fixed costs paid 1 period in advance

Exporting technology

- \blacktriangleright A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$

Exporting technology

- \blacktriangleright A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$
- \blacktriangleright An exporter
 - ▶ In current period: $\xi < \infty$
 - ▶ Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - ▶ If not: exit raises cost to ∞

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\infty)$
- \blacktriangleright An exporter
 - ▶ In current period: $\xi < \infty$
 - ▶ Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - ▶ If not: exit raises cost to ∞
- ► Our model: $\xi_H > \xi_L$, $f_H > f_L$
 - ▶ Das, Roberts, Tybout (2007): $\xi_H = \xi_L, f_H > f_L$
 - ► Ghironi and Melitz (2005): $\xi_H = \xi_L$, $f_H = f_L$
 - ► Krugman (1980) w/heterogeneity: $\xi_H = \xi_L, f_H = f_L = 0$

$$V_{C,0} = \max_{\{C_t, B_t, K_{t+1}\}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$

$$C_t + K_{t+1} + Q_t \frac{B_t}{P_t} \le W_t L_t + R_t K_t + (1 - \delta) K_t + \Pi_t + T_t + \frac{B_{t-1}}{P_t},$$

$$P_t, W_t \text{ denote price level \& real wage}$$

- $\blacktriangleright \ \Pi_t$ sum of home country profits, T_t lump sum gov't transfers
- \blacktriangleright Foreign problem is analogous; for eign variables denoted by *

$$Q_{t} = \beta \frac{U_{C,t+1}}{U_{C,t}} = \beta \frac{U_{C,t+1}^{*}}{U_{C,t+1}^{*}},$$

$$1 = \beta \frac{U_{C,t+1}}{U_{C,t}} \left(R_{t+1} + 1 - \delta \right) = \beta \frac{U_{C,t+1}^{*}}{U_{C,t}^{*}} \left(R_{t+1}^{*} + 1 - \delta \right)$$

Competitive final good producers

- ▶ Combine domestic and imported intermediates, produce goods for
 - \blacktriangleright Consumption
 - ▶ Investment
 - ▶ Input into production by domestic firms

$$D_{t} = \left[\int_{s} y_{H,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{H,t}\left(s\right) ds + \int_{s} y_{F,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{F,t}\left(s\right) ds \right]^{\frac{\theta}{\theta-1}}$$
$$D_{t} = C_{t} + I_{t} + \int_{s} x(s)\varphi_{H,t}\left(s\right) ds$$

Tradable producers

- ▶ Individual state is $s = (z, \xi, f)$
- Production Technology: $y_t(s) = e^z \left[k_t(s)^{\alpha} l_t(s)^{1-\alpha}\right]^{1-\alpha_x} x(s)^{\alpha_x}$
- ▶ Profit, $\Pi_t(s)$, is

 $\max_{P_{H},P_{H}^{*},l,k,x} P_{H,t}\left(s\right) y_{H,t}\left(s\right) + P_{H,t}^{*}\left(s\right) y_{H,t}^{*}\left(s\right) - W_{t}l_{t}\left(s\right) - R_{t}k_{t}\left(s\right) - P_{t}x_{t}\left(s\right)$

s.t. $y_t(s) = y_{H,t}^d(s) + (1+\xi) y_{H,t}^{d*}(s)$,

$$V_{t}(z,\xi,f) = \max\left\{V_{t}^{1}(z,\xi,f), V_{t}^{0}(z,\xi,f)\right\}$$

$$V_t^1(z,\xi,f) = \max \prod_t (z,\xi,f) - W_t f + n_s(z) Q_t \sum_{\xi' \in \{\xi_L,\xi_H\}} \int_{z'} V_{t+1}(z',\xi',f_L) \phi(z'|z) dz' \rho_{\xi}(\xi'|\xi)$$

$$\begin{split} V_{t}^{0}\left(z,\xi,f\right) &= \max \Pi_{t}\left(z,\xi,f\right) \\ &+ n_{s}\left(z\right)Q_{t}\int_{z'}V_{t+1}\left(z',\infty,f_{H}\right)\phi\left(z'|z\right)dz' \end{split}$$

▶ With 3 iceberg costs there are three marginal firm types

- ▶ Hire f_E workers to enter
- ▶ Draw technology $\phi_E(z)$, produce in t+1

$$V_t^E = -W_t f_E + Q_t E V_t \left(z, \infty, f_H \right) \phi_E \left(z \right) \le 0$$

 $\Rightarrow N_{TE,t}$ new establishments

Parameter		
σ	IES	2
δ	Capital Depreciation	0.10
β	Discounting	0.96
$ heta \ au$	Elasticity of Subst. (Broda & Weinstein) Tariff (Anderson and van Wincoop)	5 0.1
$\begin{array}{c} \alpha_x \\ \alpha \end{array}$	MFR Gross Output/VA = 2.8 Labor share of income = 66%	$0.81 \\ 0.13$

Calibration: establishments

- ▶ Target usual plant-level moments: participation rate, starter rate, etc.
- ► Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$

Calibration: establishments

- ▶ Target usual plant-level moments: participation rate, starter rate, etc.
- ► Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$

$$\blacktriangleright \ \rho\left(\xi_H|\infty\right) = 1$$

$$\blacktriangleright \ \rho\left(\xi_H|\xi_H\right) = \rho\left(\xi_L|\xi_L\right) = \rho_{\xi}$$

Calibration: establishments

- ▶ Target usual plant-level moments: participation rate, starter rate, etc.
- ► Export technology: $\{\xi_L, \xi_H\}, \{\rho(\xi_H|\xi_H), \rho(\xi_L|\xi_L), \rho(\xi_H|\infty)\}$
 - $\blacktriangleright \ \rho\left(\xi_H|\infty\right) = 1$

$$\blacktriangleright \ \rho\left(\xi_H|\xi_H\right) = \rho\left(\xi_L|\xi_L\right) = \rho_{\xi}$$

- ▶ Micro-dynamic moments
 - 1. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
 - 2. 5 years to reach avg export intensity (Ruhl&Willis 08)

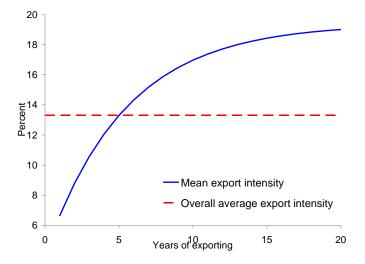
A. Exporter dynamics & characteristics:

- 1. Overall participation rate = 22.3 (92 Census of Mfrs.)
- **2.** Stopper rate = 17 (ASM)
- **3.** Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
- 4. 5 years to reach avg. export intensity (Ruhl&Willis 08)

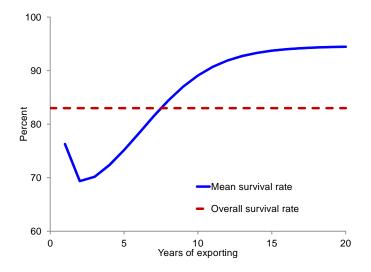
A. Exporter dynamics & characteristics:

- 1. Overall participation rate = 22.3 (92 Census of Mfrs.)
- **2.** Stopper rate = 17 (ASM)
- **3.** Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 08)
- 4. 5 years to reach avg. export intensity (Ruhl&Willis 08)

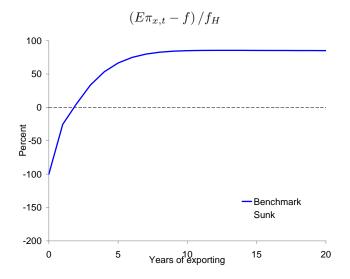
B. Establishment dynamics & heterogeneity:


- 5. Entrant 5-yr survival 37 (Dunne et al. 89)
- 6. Birth labor share =1.5 (Davis, et al. 96)
- 7. Exit labor share = 2.3 (Davis, et al. 96)
- 8. Establishment and employment distribution (92 Census)

Benchmark estimate of the exporting technology


- ▶ Entry cost 40% larger than continuation cost: $f_H/f_L = 1.4$
- ▶ High iceberg cost 62% larger than low iceberg cost (1.72 vs. 1.07)
- Iceberg cost very persistent: $\rho(\xi_H|\xi_H) = 0.92$

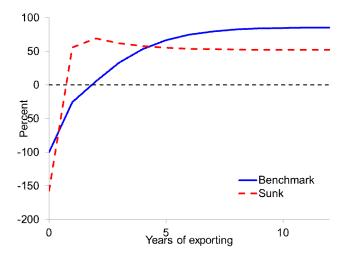
C	Common parameters		
	Benchmark	Sunk-cost	
f_H/f_E	0.038		
f_L/f_E	0.027		
ξ_H	1.718		
ξ_L	1.070		
$ ho_{\xi}$	0.916		

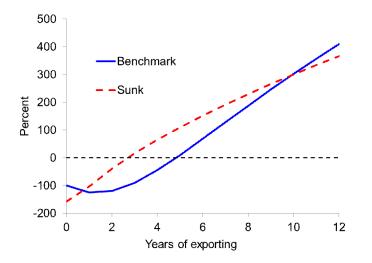

Export intensity

1-year survival rate (not targeted)

Profits (net/entry cost) of marginal starters

▶ Many new exporters exit before turning a profit.


▶ Restriction: $\xi_H = \xi_L$


	Benchmark	$\operatorname{Sunk-cost}$
f_H/f_E	0.038	0.058
f_L/f_E	0.027	0.015
ξ_H	1.718	1.430
ξ_L	1.070	1.430
$ ho_{\xi}$	0.916	1.000

► $f_H/f_L = 3.9$

► In benchmark model, high survival rate arises because producers don't want to go through growth process again — not sunk costs. Profits (net/entry cost) of marginal starters

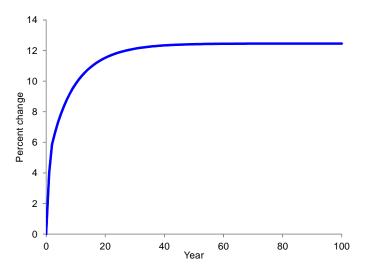
$$\left(E\pi_{x,t}-f\right)/f_{H}^{bench}$$

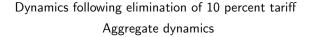
3 experiments

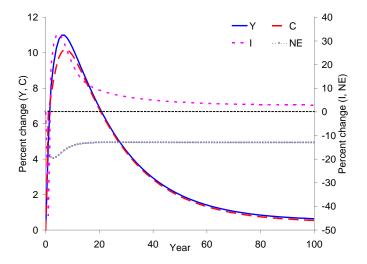
- 1. Benchmark: $\xi_H > \xi_L$, $f_H > f_L$
- **2.** Sunk cost: $\xi_H = \xi_L, f_H > f_L$
- **3.** No cost: $\xi_H = \xi_L, f_H = f_L = 0$
- \blacktriangleright Consider unanticipated global tariff reduction, $\tau = 0.1 \rightarrow \tau = 0$

Aggregate export dynamics

▶ Useful to look at dynamics of trade elasticity


$$\varepsilon_t = -\frac{\ln\left(IMD_t/IMD_{-1}\right)}{\ln\left((1+\tau_t)/(1+\tau_{-1})\right)}.$$
 (1)


where

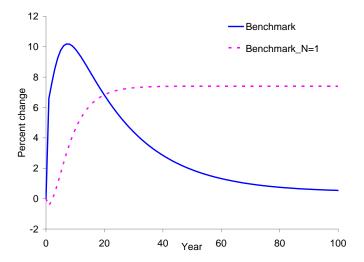

$$IMD_{t} = \frac{(1+\tau_{t})\int_{s} P_{F,t}(s) y_{F,t}(s) \varphi_{F,t}(s) ds}{\int_{s} P_{H,t}(s) y_{H,t}(s) \varphi_{H,t}(s) ds}.$$
 (2)

▶ Short-run elasticity is $\theta - 1$

Dynamics following elimination of 10 percent tariff Trade elasticity

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30		
Avg. trade elasticity $(\bar{\varepsilon}_t)$	10.2		
SS. Consumption	0.42		
SS. Trade elasticity	11.5		

$$\bar{\varepsilon}_t = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

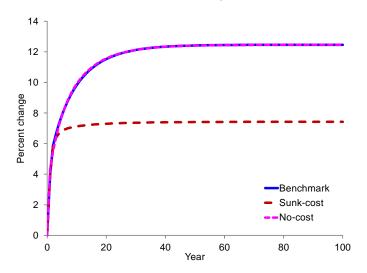

Source of overshooting

- ▶ With capital accumulation overshooting is surprising
- ▶ Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ▶ These establishments can be converted at a low cost to exporters

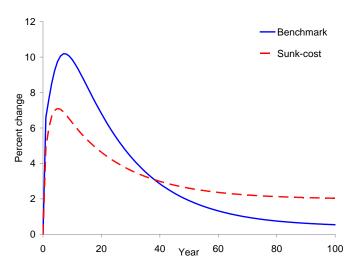
Source of overshooting

- ▶ With capital accumulation overshooting is surprising
- ► Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ▶ These establishments can be converted at a low cost to exporters
- ▶ Plant creation dynamics key to overshooting
- Experiment: force $N_t = 1$

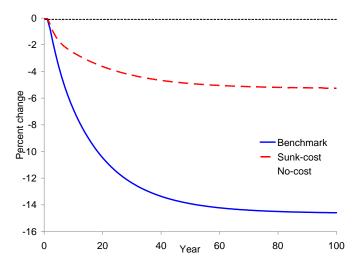
Dynamics following elimination of 10 percent tariff Aggregate Output


The sunk-cost model

- ► Literature has focused on sunk costs as a source of persistent exporting
- ▶ Sunk cost model misses out on aspects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?

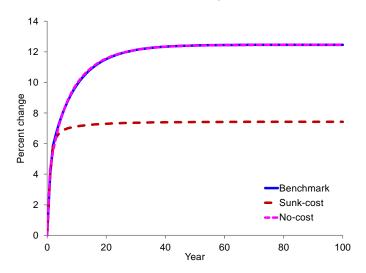

The sunk-cost model

- ► Literature has focused on sunk costs as a source of persistent exporting
- ▶ Sunk cost model misses out on aspects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?
- ▶ Answer: Not so good on trade, pretty good on consumption/welfare

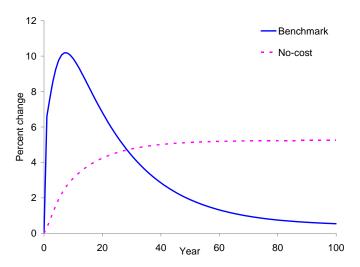

Trade elasticity

Consumption

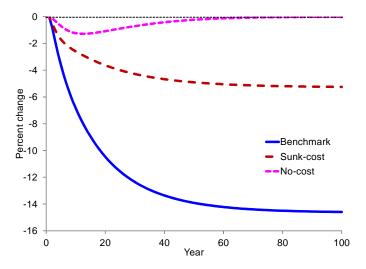
Establishments



Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	
Avg. trade elasticity $(\bar{\varepsilon}_t)$	10.2	6.9	
SS. Consumption	0.42	1.98	
SS. Trade elasticity	11.5	7.2	


$$\bar{\varepsilon}_t = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

- \blacktriangleright Krugman (1980): all firms export
- ▶ Requires two main changes
 - 1. Change θ to get LR trade elasticity
 - 2. Add adjustment friction to get dynamics of trade elasticity


Trade elasticity

Consumption

Establishments

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	2.34
Discounted trade elasticity	10.2	6.9	10.2
Consumption	0.42	1.98	3.93
Trade elasticity	11.5	7.2	11.5