Social capital and economic growth in Europe: nonlinear trends and heterogeneous regional effects

J. Peiró-Palomino E. Tortosa-Ausina

Universitat Jaume I
and
Instituto Valenciano de Investigaciones Económicas

Social capital, institutions and economic performance in times of crisis
1. Introduction

2. Empirical methodology

3. Model, sample and descriptive statistics

4. Results, parametric regressions

5. Results, nonparametric regressions

6. Conclusions
Introduction
Social capital as a growth theory

- Theories explaining economic growth: geography, demography, institutions, education, financial development and... **social capital**
- Durlauf and Fafchamfs (2005): “A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules”
- Some **classical contributions** are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
Introduction
Social capital as a growth theory

- Theories explaining economic growth: geography, demography, institutions, education, financial development and... **social capital**
- Durlauf and Fafchamfs (2005): “A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules”
- Some **classical contributions** are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
Introduction
Social capital as a growth theory

- Theories explaining economic growth: geography, demography, institutions, education, financial development and... **social capital**
- Durlauf and Fafchamfs (2005): “A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules”
- Some **classical contributions** are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
Theories explaining economic growth: geography, demography, institutions, education, financial development and... **social capital**

Durlauf and Fafchamps (2005): “A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules”

Some **classical contributions** are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).

Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)

But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)

But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)

But...sometimes can be also negative
Social capital stimulates economic growth throughout a variety of channels:

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)

But...sometimes can be also negative
European regional setting: **mixed results** in a frame of growth regressions with the most common indicators: trust, associational life and civic norms

- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active participation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)
European regional setting: **mixed results** in a frame of growth regressions with the most common indicators: trust, associational life and civic norms

- **Schneider et al. (2000):** trust negatively related to growth
- **Beugelsdijk and Van Schaik (2005):** trust nonsignificant but associational activities positive and significantly related to growth (especially active participation)
- **Akçomak and Ter Weel (2009):** trust fosters innovation but not directly related to growth
- **Peiró-Palomino, Forte and Tortosa-Ausina (2014):** trust, associations and civic norms related to higher growth (using Bayesian methods)
Introduction
Social capital and growth in the European context

- European regional setting: **mixed results** in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active participation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)
European regional setting: **mixed results** in a frame of growth regressions with the most common indicators: trust, associational life and civic norms

- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active participation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)
Introduction
Social capital and growth in the European context

European regional setting: **mixed results** in a frame of growth regressions with the most common indicators: trust, associational life and civic norms

- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active participation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)
Most studies are exclusively focused on Western Europe, while evidence for Eastern and Central Europe (ECE) is very scant (Peiró-Palomino, Forte and Tortosa-Ausina, 2014 analyzed a sample of 85 NUTS 1 including ECE regions).

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxbhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital.
- ECE regions have experienced higher growth in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012).
Most studies are exclusively focused on Western Europe, while evidence for **Eastern and Central Europe (ECE)** is very scant (Peiró-Palomino, Forte and Tortosa-Ausina, 2014 analyzed a sample of 85 NUTS 1 including ECE regions)

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is **lower** than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gérxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital
- ECE regions have experienced **higher growth** in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012)
Most studies are exclusively focused on Western Europe, while evidence for Eastern and Central Europe (ECE) is very scant (Peiró-Palomino, Forte and Tortosa-Ausina, 2014 analyzed a sample of 85 NUTS 1 including ECE regions).

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital.

- ECE regions have experienced higher growth in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012).
Most studies are exclusively focused on Western Europe, while evidence for Eastern and Central Europe (ECE) is very scant (Peiró-Palomino, Forte and Tortosa-Ausina, 2014 analyzed a sample of 85 NUTS 1 including ECE regions).

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërkhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital.

- ECE regions have experienced higher growth in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012).
Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)

- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity
Introduction

Objectives of the paper

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)

Use of nonparametric regression which permits shed light on:
- Potential nonlinearities of the parameters
- Regional parameter heterogeneity
Introduction
Objectives of the paper

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity
Introduction
Objectives of the paper

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity
Objectives of the paper

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity
Empirical methodology

Parametric and nonparametric regressions

- **Parametric (OLS)** regressions

\[
Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \ i = 1, 2, ... n,
\]

- **Nonparametric (kernel)** regressions

\[
Y_i = m(Z_i) + \epsilon_i, \ i = 1, 2, ... n,
\]

- \(m(.) \) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required
Empirical methodology
Parametric and nonparametric regressions

- Parametric (OLS) regressions
 \[Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \quad i = 1, 2, \ldots n, \]

- Nonparametric (kernel) regressions
 \[Y_i = m(Z_i) + \epsilon_i, \quad i = 1, 2, \ldots n, \]

 - \(m(.) \) is an **unknown smooth function** capturing the conditional relationship between the dependent and the independent variables in the model
 - Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
 - Generalized product kernel methods, valid for both continuous and categorical variables
 - Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
 - Neither a predefined functional form nor a distribution of the error term is required
Empirical methodology

Parametric and nonparametric regressions

- **Parametric (OLS) regressions**

 \[Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \ i = 1, 2, \ldots n, \]
 \((1) \)

- **Nonparametric (kernel) regressions**

 \[Y_i = m(Z_i) + \epsilon_i, \ i = 1, 2, \ldots n, \]
 \((2) \)

 - \(m(.) \) is an **unknown smooth function** capturing the conditional relationship between the dependent and the independent variables in the model.
 - Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004).
 - Generalized product kernel methods, valid for both continuous and categorical variables.
 - Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity).
 - Neither a predefined functional form nor a distribution of the error term is required.
Empirical methodology

Parametric and nonparametric regressions

- **Parametric (OLS)** regressions

 \[Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \ i = 1, 2, \ldots n, \]

- **Nonparametric (kernel)** regressions

 \[Y_i = m(Z_i) + \epsilon_i, \ i = 1, 2, \ldots n, \]

 - \(m(.) \) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
 - Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
 - Generalized product kernel methods, valid for both continuous and categorical variables
 - Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
 - Neither a predefined functional form nor a distribution of the error term is required
Empirical methodology

Parametric and nonparametric regressions

- **Parametric (OLS)** regressions

\[Y_i = \beta_0 + \sum_{j=1}^{v} \beta_j Z_{ji} + \epsilon_i, \ i = 1, 2, \ldots n, \]

(1)

- **Nonparametric (kernel)** regressions

\[Y_i = m(Z_i) + \epsilon_i, \ i = 1, 2, \ldots n, \]

(2)

- \(m(.) \) is an **unknown smooth function** capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required
Empirical methodology
Parametric and nonparametric regressions

- **Parametric (OLS)** regressions

\[Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \ i = 1, 2, ... n, \]

(1)

- **Nonparametric (kernel)** regressions

\[Y_i = m(Z_i) + \epsilon_i, \ i = 1, 2, ... n, \]

(2)

- \(m(.) \) is an **unknown smooth function** capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required
Empirical methodology

Parametric and nonparametric regressions

- **Parametric (OLS) regressions**

\[Y_i = \beta_0 + \sum_{j=1}^{V} \beta_j Z_{ji} + \epsilon_i, \quad i = 1, 2, \ldots, n, \]

(1)

- **Nonparametric (kernel) regressions**

\[Y_i = m(Z_i) + \epsilon_i, \quad i = 1, 2, \ldots, n, \]

(2)

- \(m(.) \) is an **unknown smooth function** capturing the conditional relationship between the dependent and the independent variables in the model.
- Some alternatives to compute \(m(Z_i) \) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004).
- Generalized product kernel methods, valid for both continuous and categorical variables.
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity).
- Neither a predefined functional form nor a distribution of the error term is required.
Local-Constant Least Squares (LCLS)

- Particularly useful to identify **relevancy** of the regressors
- Estimates \(m(.) \) by calculating a local weighted average of the dependent variable \(Y_i \) considering the observations with similar values of the independent variables \(Z_i \)
- The **bandwidths** determine the quantity of averaged observations around each point \(z_i \)
- The estimator obeys to the following expression

\[
\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}
\] (3)
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify **relevancy** of the regressors

Estimates $m(.)$ by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i

The **bandwidths** determine the quantity of averaged observations around each point z_i

The estimator obeys to the following expression

$$
\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}
$$

(3)
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify **relevancy** of the regressors
- Estimates $m(.)$ by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The **bandwidths** determine the quantity of averaged observations around each point z_i
- The estimator obeys to the following expression

$$
\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K \left(\frac{z_{si} - z_s}{h_s} \right)}
$$

(3)
Local-Constant Least Squares (LCLS)

Particularly useful to identify **relevancy** of the regressors

Estimates \(m(\cdot) \) by calculating a local weighted average of the dependent variable \(Y_i \) considering the observations with similar values of the independent variables \(Z_i \)

The **bandwidths** determine the quantity of averaged observations around each point \(z_i \)

The estimator obeys to the following expression

\[
\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K \left(\frac{z_{si} - z_{s}}{h_s} \right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K \left(\frac{z_{si} - z_{s}}{h_s} \right)}
\]

(3)
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify **relevancy** of the regressors
- Estimates \(m(.) \) by calculating a local weighted average of the dependent variable \(Y_i \) considering the observations with similar values of the independent variables \(Z_i \)
- The **bandwidths** determine the quantity of averaged observations around each point \(z_i \)
- The estimator obeys to the following expression

\[
\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K \left(\frac{z_{si} - z_{s}}{h_s} \right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K \left(\frac{z_{si} - z_{s}}{h_s} \right)}
\]

(3)
Local-Linear Least Squares (LLLS)

- Suitable to detect **nonlinearities** of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$ \hspace{1cm} (4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$ \hspace{1cm} (5)

Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel.
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Linear Least Squares (LLLS)
- Suitable to detect **nonlinearities** of the regressors
 - It computes a weighted least-squares regression around every point z_i.
 - Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight.
 - The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$ \hspace{1cm} (4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$ \hspace{1cm} (5)

- Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel.
Empirical methodology
Nonparametric regression, estimation alternatives

Local-Linear Least Squares (LLLS)

Suitable to detect nonlinearity of the regressors

It computes a weighted least-squares regression around every point \(z_i \).

Weights established by a kernel function and a bandwidth vector such that those observations closer to \(z_i \) receive more weight.

The estimator obeys to the following expression:

\[
Y_i \approx m(z) + (z_i^c - z^c) \beta(z^c) + \epsilon_i
\]

\[
\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y
\]

Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel.
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Linear Least Squares (LLLS)
- Suitable to detect **nonlinearities** of the regressors
- It computes a weighted least-squares regression around every point \(z_i \).
- Weights established by a kernel function and a bandwidth vector such that those observations closer to \(z_i \) receive more weight
- The estimator obeys to the following expression

\[
Y_i \approx m(z_i) + (z_i^c - z^c)\beta(z^c) + \epsilon_i
\] (4)

\[
\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y
\] (5)

Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel.
Local-Linear Least Squares (LLLS)
Suitable to detect **nonlinearities** of the regressors
It computes a weighted least-squares regression around every point \(z_i \).
Weights established by a kernel function and a bandwidth vector such that those observations closer to \(z_i \) receive more weight
The estimator obeys to the following expression

\[
Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i
\]

(4)

\[
\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y
\]

(5)

Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel.
Empirical methodology
Nonparametric regression, estimation alternatives

- Local-Linear Least Squares (LLLS)
- Suitable to detect **nonlinearities** of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$ (4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$ (5)

- Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel
Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures).

Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing).

Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure.

The bandwidths not only determine the degree of smoothing:

- In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy.
- In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity.
- UB are defined as two standard deviations for continuous variables and $(q_s - 1)/q_s$ for categorical variables (with q_s the number of values the variable can take).
Empirical methodology
Nonparametric regression, estimation alternatives

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures).
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing).
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure.
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy.
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity.
 - UB are defined as two standard deviations for continuous variables and \((q_s - 1)/q_s\) for categorical variables (with \(q_s\) the number of values the variable can take).
Empirical methodology
Nonparametric regression, estimation alternatives

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure

- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and \((q_s - 1)/q_s\) for categorical variables (with \(q_s\) the number of values the variable can take)
Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)

Unappropriate bandwidths may produce estimates with low variance and high bias (**undersmoothing**), or high variance and low bias (**oversmoothing**)

Bandwidths are selected using **least-squares cross-validation (LSCV)**, an automated bandwidth selection procedure

The bandwidths not only determine the degree of smoothing:

- In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
- In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **linearity**
- UB are defined as two standard deviations for continuous variables and $(q_s - 1)/q_s$ for categorical variables (with q_s the number of values the variable can take)
Empirical methodology
Nonparametric regression, estimation alternatives

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (**undersmoothing**), or high variance and low bias (**oversmoothing**)
- Bandwidths are selected using **least-squares cross-validation (LSCV)**, an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **linearity**
 - UB are defined as two standard deviations for continuous variables and \((q_s - 1)/q_s\) for categorical variables (with \(q_s\) the number of values the variable can take)
Empirical methodology
Nonparametric regression, estimation alternatives

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)

- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)

- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure

- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity

- UB are defined as two standard deviations for continuous variables and
 \((q_s - 1)/q_s\) for categorical variables (with \(q_s\) the number of values the variable can take)
Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)

Unappropriate bandwidths may produce estimates with low variance and high bias (*undersmoothing*), or high variance and low bias (*oversmoothing*)

Bandwidths are selected using *least-squares cross-validation (LSCV)*, an automated bandwidth selection procedure

The bandwidths not only determine the degree of smoothing:

- In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes *irrelevancy*
- In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes *linearity*
- UB are defined as two standard deviations for continuous variables and \((q_s - 1)/q_s\) for categorical variables (with \(q_s\) the number of values the variable can take)
Outline

1. Introduction
2. Empirical methodology
3. Model, sample and descriptive statistics
4. Results, parametric regressions
5. Results, nonparametric regressions
6. Conclusions
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)

ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)

Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)

Different models (1–5) where the variables are included sequentially

Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)

ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)

Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)

Different models (1–5) where the variables are included sequentially

Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP \((GDP_0) \), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)

ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)

Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)

Different models (1–5) where the variables are included sequentially

Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)

ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)

Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)

Different models (1–5) where the variables are included sequentially

Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)

Neoclassical growth equation (Solow, 1957) augmented with social capital

TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)

ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)

Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)

Different models (1–5) where the variables are included sequentially

Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)
Neoclassical growth equation (Solow, 1957) augmented with social capital
TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
Different models (1–5) where the variables are included sequentially
Data constraints on the social capital variables. (NUTS 1 level aggregation)
Sample of 237 European regions (NUTS 2)
Neoclassical growth equation (Solow, 1957) augmented with social capital
TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
Controls: initial GDP (GDP_0), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
Different models (1–5) where the variables are included sequentially
Data constraints on the social capital variables. (NUTS 1 level aggregation)
Descriptive statistics

Sample summary, ECE and non-ECE regions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non ECE regions</td>
<td>ECE regions</td>
<td>Non ECE regions</td>
<td>ECE regions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>Mean</td>
<td>s.d.</td>
<td>Obs.</td>
<td>Mean</td>
<td>s.d.</td>
</tr>
<tr>
<td>GGDP</td>
<td>190</td>
<td>0.050</td>
<td>0.031</td>
<td>46</td>
<td>0.102</td>
<td>0.031</td>
</tr>
<tr>
<td>GDP</td>
<td>190</td>
<td>17,736</td>
<td>6,995</td>
<td>46</td>
<td>2,892</td>
<td>1,386</td>
</tr>
<tr>
<td>GPOP</td>
<td>192</td>
<td>0.053</td>
<td>0.005</td>
<td>46</td>
<td>0.048</td>
<td>0.004</td>
</tr>
<tr>
<td>GFCF</td>
<td>161</td>
<td>0.208</td>
<td>0.055</td>
<td>46</td>
<td>0.218</td>
<td>0.071</td>
</tr>
<tr>
<td>HC</td>
<td>189</td>
<td>0.214</td>
<td>0.083</td>
<td>46</td>
<td>0.136</td>
<td>0.067</td>
</tr>
<tr>
<td>TRUST</td>
<td>192</td>
<td>0.334</td>
<td>0.138</td>
<td>46</td>
<td>0.184</td>
<td>0.055</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>192</td>
<td>0.037</td>
<td>0.022</td>
<td>46</td>
<td>0.022</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Empirical methodology
3. Model, sample and descriptive statistics
4. Results, parametric regressions
5. Results, nonparametric regressions
6. Conclusions
Results, parametric regressions

Ordinary least squares (OLS) estimation

<table>
<thead>
<tr>
<th>Dependent variable: GDP growth (GGDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
</tr>
<tr>
<td>(Intercept)</td>
</tr>
<tr>
<td>(0.018)</td>
</tr>
<tr>
<td>$\log(\text{GDP}_0)$</td>
</tr>
<tr>
<td>(0.347)</td>
</tr>
<tr>
<td>GPOP</td>
</tr>
<tr>
<td>(0.244)</td>
</tr>
<tr>
<td>GFCF</td>
</tr>
<tr>
<td>(0.028)</td>
</tr>
<tr>
<td>HC</td>
</tr>
<tr>
<td>(0.017)</td>
</tr>
<tr>
<td>TRUST</td>
</tr>
<tr>
<td>(0.011)</td>
</tr>
<tr>
<td>ACTIVE</td>
</tr>
<tr>
<td>(0.064)</td>
</tr>
<tr>
<td>CAPITAL</td>
</tr>
<tr>
<td>(0.004)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>R^2 (Adjusted)</td>
</tr>
<tr>
<td>F_{STAT}</td>
</tr>
<tr>
<td>Time control</td>
</tr>
</tbody>
</table>

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Valencia, 24th October 2014 18 / 37
Results, parametric regressions

Tests of appropriateness of the parametric models Hsiao et al. (2007)

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Jn)-statistic</td>
<td>12.828 (0.000)</td>
<td>10.580 (0.000)</td>
<td>5.676 (0.000)</td>
<td>9.820 (0.000)</td>
<td>9.764 (0.000)</td>
</tr>
</tbody>
</table>
Results, nonparametric regressions
Bandwidths for LCLS and LLLS estimators

<table>
<thead>
<tr>
<th>Variables/method</th>
<th>UB</th>
<th>LCLS</th>
<th>LLLS</th>
<th>UB</th>
<th>LCLS</th>
<th>LLLS</th>
<th>UB</th>
<th>LCLS</th>
<th>LLLS</th>
<th>UB</th>
<th>LCLS</th>
<th>LLLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(GDP$_0$)</td>
<td>1.622</td>
<td>0.134</td>
<td>0.276</td>
<td>0.154</td>
<td>0.205</td>
<td>0.242</td>
<td>0.1528</td>
<td>0.261</td>
<td>0.287</td>
<td>0.748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPOP</td>
<td>0.012</td>
<td>0.007</td>
<td>0.008</td>
<td>1,809</td>
<td>0.005</td>
<td>0.007</td>
<td>22,195</td>
<td>0.003</td>
<td>0.010</td>
<td>1,364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFCF</td>
<td>0.106</td>
<td>0.016</td>
<td>0.057</td>
<td>149,738</td>
<td>0.033</td>
<td>0.042</td>
<td>383,800</td>
<td>0.025</td>
<td>1,149,916</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>0.173</td>
<td>0.019</td>
<td>0.052</td>
<td>0.270</td>
<td>0.421</td>
<td>0.033</td>
<td>0.066</td>
<td>0.269</td>
<td>0.147</td>
<td>0.640</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>TRUST</td>
<td>0.278</td>
<td>2.05e-06</td>
<td>0.059</td>
<td>1.16e-04</td>
<td>0.065</td>
<td>0.005</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>0.043</td>
<td>0.007</td>
<td>0.012</td>
<td>0.017</td>
<td>0.027</td>
<td>3.0e-04</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPITAL</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.499</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.007</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: GDP growth ($GGDP$)
Results, nonparametric regressions
Social capital indicators in Model 5

Peiró-Palomino and Tortosa-Ausina
Workshop on Social Capital
Valencia, 24th October 2014
Results, nonparametric regressions
Control variables in Model 5

Peiró-Palomino and Tortosa-Ausina
Workshop on Social Capital
Valencia, 24th October 2014 23 / 37
Results, nonparametric regressions

LLLS quartile estimates for the continuous regressors

Dependent variable: GDP growth ($GGDP$)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(GDP_0)$</td>
<td>-0.069</td>
<td>-0.047</td>
<td>-0.030</td>
<td>-0.071</td>
<td>-0.052</td>
<td>-0.040</td>
<td>-0.057</td>
<td>-0.041</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>$GPOP$</td>
<td>0.054</td>
<td>0.393</td>
<td>0.719</td>
<td>0.141</td>
<td>0.577</td>
<td>0.973</td>
<td>-0.280</td>
<td>0.116</td>
<td>0.989</td>
</tr>
<tr>
<td></td>
<td>(0.213)</td>
<td>(0.097)</td>
<td>(0.210)</td>
<td>(0.338)</td>
<td>(0.139)</td>
<td>(0.202)</td>
<td>(0.114)</td>
<td>(0.214)</td>
<td>(0.277)</td>
</tr>
<tr>
<td>$GFCF$</td>
<td>-0.216</td>
<td>-0.091</td>
<td>0.025</td>
<td>-0.289</td>
<td>-0.142</td>
<td>0.027</td>
<td>-0.224</td>
<td>-0.065</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.034)</td>
<td>(0.006)</td>
<td>(0.033)</td>
<td>(0.015)</td>
<td>(0.028)</td>
<td>(0.033)</td>
<td>(0.009)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>HC</td>
<td>0.020</td>
<td>0.101</td>
<td>0.143</td>
<td>0.035</td>
<td>0.093</td>
<td>0.129</td>
<td>-0.005</td>
<td>0.040</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.017)</td>
<td>(0.041)</td>
<td>(0.018)</td>
<td>(0.026)</td>
<td>(0.024)</td>
<td>(0.010)</td>
<td>(0.048)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>$TRUST$</td>
<td>-0.008</td>
<td>0.033</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.011)</td>
<td>(0.010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ACTIVE$</td>
<td>-0.039</td>
<td>0.467</td>
<td>0.744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.163)</td>
<td>(0.224)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>404</td>
<td>404</td>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.816</td>
<td>0.854</td>
<td>0.916</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time/capital controls: No
Results, nonparametric regressions

LLLS quartile estimates for the continuous regressors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(GDP_0)$</td>
<td>-0.052</td>
<td>-0.034</td>
<td>-0.021</td>
<td>-0.057</td>
<td>-0.035</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>$GPOP$</td>
<td>-0.538</td>
<td>0.388</td>
<td>0.921</td>
<td>-0.152</td>
<td>0.168</td>
<td>0.663</td>
</tr>
<tr>
<td></td>
<td>(0.364)</td>
<td>(0.872)</td>
<td>(0.347)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>$GFCF$</td>
<td>-0.276</td>
<td>-0.104</td>
<td>0.08</td>
<td>-0.354</td>
<td>0.024</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.087)</td>
<td>(0.115)</td>
<td>(0.156)</td>
<td>(0.009)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>HC</td>
<td>0.000</td>
<td>0.051</td>
<td>0.149</td>
<td>-0.012</td>
<td>0.031</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.005)</td>
<td>(0.017)</td>
<td>(0.012)</td>
<td>(0.003)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>$TRUST$</td>
<td>-0.050</td>
<td>0.024</td>
<td>0.083</td>
<td>-0.018</td>
<td>0.014</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.010)</td>
<td>(0.026)</td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>$ACTIVE$</td>
<td>0.021</td>
<td>0.373</td>
<td>0.788</td>
<td>0.143</td>
<td>0.322</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.050)</td>
<td>(0.128)</td>
<td>(0.041)</td>
<td>(0.094)</td>
<td>(0.086)</td>
</tr>
</tbody>
</table>

	404	404				
N						
R^2	0.958			0.958		
Time/capital controls	No	Yes				
Results, nonparametric regressions

Densities of the estimated coefficients in Model 5, Sheather and Jones (1991)

Peiró-Palomino and Tortosa-Ausina
Workshop on Social Capital
Valencia, 24th October 2014
Results, nonparametric regressions

Densities of the estimated coefficients in Model 5, Sheather and Jones (1991)
Results, nonparametric regression

LLLS quartile estimates for the social capital variables in Model 5 across particular groups of regions

<table>
<thead>
<tr>
<th>Split/variable</th>
<th>TRUST</th>
<th></th>
<th></th>
<th>TRUST</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Below median (\ln(GDP_0))</td>
<td>-0.081</td>
<td>0.041</td>
<td>0.097</td>
<td>0.055</td>
<td>0.288</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.014)</td>
<td>(0.025)</td>
<td>(0.103)</td>
<td>(0.077)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>Above median (\ln(GDP_0))</td>
<td>-0.010</td>
<td>0.006</td>
<td>0.029</td>
<td>0.188</td>
<td>0.348</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.041)</td>
<td>(0.038)</td>
<td>(0.015)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Below median (GFCF)</td>
<td>-0.010</td>
<td>0.010</td>
<td>0.099</td>
<td>0.179</td>
<td>0.323</td>
<td>0.471</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.004)</td>
<td>(0.018)</td>
<td>(0.023)</td>
<td>(0.077)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Above median (GFCF)</td>
<td>-0.034</td>
<td>0.018</td>
<td>0.069</td>
<td>0.097</td>
<td>0.348</td>
<td>0.559</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.019)</td>
<td>(0.016)</td>
<td>(0.062)</td>
<td>(0.016)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>Below median (HC)</td>
<td>-0.035</td>
<td>0.025</td>
<td>0.090</td>
<td>0.076</td>
<td>0.369</td>
<td>0.545</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.017)</td>
<td>(0.011)</td>
<td>(0.050)</td>
<td>(0.045)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Above median (HC)</td>
<td>-0.013</td>
<td>0.012</td>
<td>0.065</td>
<td>0.175</td>
<td>0.287</td>
<td>0.468</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.014)</td>
<td>(0.069)</td>
<td>(0.014)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>Below median (TRUST)</td>
<td>-0.035</td>
<td>0.024</td>
<td>0.075</td>
<td>0.086</td>
<td>0.344</td>
<td>0.586</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.017)</td>
<td>(0.013)</td>
<td>(0.073)</td>
<td>(0.077)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Above median (TRUST)</td>
<td>-0.011</td>
<td>0.011</td>
<td>0.089</td>
<td>0.166</td>
<td>0.307</td>
<td>0.454</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.017)</td>
<td>(0.060)</td>
<td>(0.015)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Below median (ACTIVE)</td>
<td>-0.063</td>
<td>0.006</td>
<td>0.108</td>
<td>0.116</td>
<td>0.297</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.003)</td>
<td>(0.045)</td>
<td>(0.051)</td>
<td>(0.014)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Above median (ACTIVE)</td>
<td>-0.012</td>
<td>0.019</td>
<td>0.043</td>
<td>0.157</td>
<td>0.349</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.006)</td>
<td>(0.052)</td>
<td>(0.031)</td>
<td>(0.013)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>ECE regions</td>
<td>-0.150</td>
<td>-0.086</td>
<td>0.045</td>
<td>-1.338</td>
<td>0.212</td>
<td>0.815</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.019)</td>
<td>(0.029)</td>
<td>(0.064)</td>
<td>(0.104)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Non ECE regions</td>
<td>-0.004</td>
<td>0.019</td>
<td>0.083</td>
<td>0.187</td>
<td>0.328</td>
<td>0.469</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.016)</td>
<td>(0.052)</td>
<td>(0.070)</td>
<td>(0.060)</td>
</tr>
</tbody>
</table>
Results, nonparametric regressions

Densities of the estimated coefficients for TRUST in Model 5 across particular groups of regions, Sheather and Jones (1991)

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Valencia, 24th October 2014
Results, nonparametric regressions

Densities of the estimated coefficients for ACTIVE in Model 5 across particular groups of regions, Sheather and Jones (1991)

- Below median income
- Above median income

- Below median investment
- Above median investment

- Below median education
- Above median education

- Below median trust
- Above median trust

- ECE regions
- Non ECE regions
Results, nonparametric regressions
Nonparametric comparison of the estimated densities for different subgroups in Model 5 (Li, 1996)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>TRUST</th>
<th>ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below vs. above (GDP_0)</td>
<td>46.951</td>
<td>13.288</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Below vs. above (GFCF)</td>
<td>17.757</td>
<td>7.163</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Below vs. above (HC)</td>
<td>12.338</td>
<td>12.150</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Below vs. above (TRUST)</td>
<td>23.646</td>
<td>12.003</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Below vs. above (ACTIVE)</td>
<td>2.768</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.393)</td>
</tr>
<tr>
<td>ECE vs. non ECE regions</td>
<td>36.520</td>
<td>59.054</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time.

Unfortunately, most of the referees in academic journals do not agree on this.

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

- **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments.
- **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time

Unfortunately, most of the referees in academic journals do not agree on this

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments

Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital
Results, nonparametric regressions
Dealing with endogeneity

- **Endogeneity** issues should not be a problem in the context of social capital due to the stability of social values over time.

- Unfortunately, most of the referees in academic journals do not agree on this.

- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments.
 - **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time.

Unfortunately, most of the referees in academic journals do not agree on this.

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments.

Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time.

Unfortunately, most of the referees in academic journals do not agree on this.

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

- **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments.
- **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time.

Unfortunately, most of the referees in academic journals do not agree on this.

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

- **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments.
- **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time.

Unfortunately, most of the referees in academic journals do not agree on this.

In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013).

Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:

- **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments.
- **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.

Selection of instruments: Nobel strategy by Henderson’s et al, (2013). The control variables instrument social capital.
Results, nonparametric regressions

Dealing with endogeneity

<table>
<thead>
<tr>
<th>Variables/method</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(GDP<sub>0</sub>)</td>
<td>1.622</td>
<td>0.134</td>
<td>0.276</td>
<td>0.154</td>
<td>0.242</td>
</tr>
<tr>
<td>GPOP</td>
<td>0.012</td>
<td>0.007</td>
<td>0.008</td>
<td>0.1809</td>
<td>0.006</td>
</tr>
<tr>
<td>GFCF</td>
<td>0.106</td>
<td>0.016</td>
<td>0.057</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>0.173</td>
<td>0.019</td>
<td>0.052</td>
<td>0.270</td>
<td></td>
</tr>
<tr>
<td>TRUST</td>
<td>0.278</td>
<td>2.05e-06</td>
<td>0.059</td>
<td>1.16e-04</td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>0.043</td>
<td>0.007</td>
<td>0.012</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>CAPITAL</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: GDP growth (\(GGDP\))
Results, nonparametric regressions

IV estimation of Model 5 (Su and Ullah, 2008), bandwidths

<table>
<thead>
<tr>
<th></th>
<th>Stage I (LCLS)</th>
<th>Stage II (LLLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UB</td>
<td>D.V: TRUST</td>
</tr>
<tr>
<td>(\ln(GDP_0))</td>
<td>1.622</td>
<td>0.111</td>
</tr>
<tr>
<td>GPOP</td>
<td>0.012</td>
<td>0.002</td>
</tr>
<tr>
<td>GFCF</td>
<td>0.106</td>
<td>0.117</td>
</tr>
<tr>
<td>HC</td>
<td>0.173</td>
<td>0.015</td>
</tr>
<tr>
<td>TRUST</td>
<td>0.278</td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>CAPITAL</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>(\mu_{\text{TRUST}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_{\text{ACTIVE}})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results, nonparametric regression

IV estimation, LLLS quartile estimates for the continuous variables in the instrumented Model 5 (Su and Ullah, 2008)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(GDP$_0$)</td>
<td>-0.057</td>
<td>-0.035</td>
<td>-0.016</td>
<td>-0.050</td>
<td>-0.039</td>
<td>-0.028</td>
</tr>
<tr>
<td>GPOP</td>
<td>-0.152</td>
<td>0.168</td>
<td>0.663</td>
<td>-0.257</td>
<td>0.298</td>
<td>1.221</td>
</tr>
<tr>
<td>GFCF</td>
<td>-0.354</td>
<td>0.024</td>
<td>0.139</td>
<td>-0.288</td>
<td>0.006</td>
<td>0.105</td>
</tr>
<tr>
<td>HC</td>
<td>-0.012</td>
<td>0.031</td>
<td>0.099</td>
<td>-0.048</td>
<td>0.038</td>
<td>0.112</td>
</tr>
<tr>
<td>TRUST</td>
<td>-0.018</td>
<td>0.014</td>
<td>0.079</td>
<td>-0.046</td>
<td>0.034</td>
<td>0.121</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>0.143</td>
<td>0.322</td>
<td>0.504</td>
<td>-0.183</td>
<td>0.298</td>
<td>0.976</td>
</tr>
<tr>
<td>N</td>
<td>404</td>
<td>404</td>
<td>404</td>
<td>404</td>
<td>404</td>
<td>404</td>
</tr>
<tr>
<td>R^2</td>
<td>0.958</td>
<td>0.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non-ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered.
 - Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered.
 - Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered.
 - Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered.
 - Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.

- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.

- ACTIVE is significant in both the parametric and the nonparametric estimation.

- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.

- The greatest differences appear when comparing ECE and non ECE regions.

Some policy suggestions:

- The existent stock of social capital in each region should be considered.

- Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.

Some policy suggestions:
- The existent stock of social capital in each region should be considered.
- Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered.
 - Policies should be applied carefully in some regions where they might yield undesired effects.
Conclusions

- The linear specification imposed by the parametric methods is not the true underlying relationship between the two indicators of social capital and growth.
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one.
- ACTIVE is significant in both the parametric and the nonparametric estimation.
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions.
- The greatest differences appear when comparing ECE and non ECE regions.

Some policy suggestions:
- The existent stock of social capital in each region should be considered.
- Policies should be applied carefully in some regions where they might yield undesired effects.