Dynamic Selection: An Idea Flows Theory of Entry, Trade and Growth

Thomas Sampson

London School of Economics

26 May 2015
Motivation

Productivity dispersion across firms opens two channels for aggregate productivity gains:

1. Reallocation from low to high productivity firms (Melitz 2003; Hsieh & Klenow 2009)
2. Technology diffusion between firms (Luttmer 2007; Lucas & Moll 2014)
Productivity dispersion across firms opens two channels for aggregate productivity gains:

1. Reallocation from low to high productivity firms (Melitz 2003; Hsieh & Klenow 2009)
2. Technology diffusion between firms (Luttmer 2007; Lucas & Moll 2014)

What are the effects of trade when there is both reallocation and technology diffusion?
Technology diffusion

- Technologies are non-rival and partially non-excludable

- Firms learn about the process technologies used by competitors, e.g. managerial methods; organizational structure; production techniques

- But most firms do not adopt frontier technologies
 - Information asymmetries; adaptation costs; learning capacity constraints
Technology diffusion

- Technologies are non-rival and partially non-excludable

- Firms learn about the process technologies used by competitors, e.g. managerial methods; organizational structure; production techniques

- But most firms do not adopt frontier technologies
 - Information asymmetries; adaptation costs; learning capacity constraints

- Model technology diffusion by introducing knowledge spillovers where:
 1. Spillovers affect entrants’ productivity, not entry costs
 2. Spillovers depend upon entire productivity distribution
Incorporate knowledge spillovers into dynamic version of Melitz 2003

Entrants’ productivity draws are endogenous to incumbent productivity distribution

Selection on productivity causes spillovers that increase productivity of future entrants

Entry increases competition and leads to tougher selection

Complementarity between selection and diffusion generates endogenous growth as the productivity distribution shifts upwards over time
Free entry condition:

Entry cost = \text{Pr}(\text{Successful entry}) \times \text{E}[\text{Profits} \mid \text{Successful entry}]
Trade liberalization

Free entry condition:

\[\text{Entry cost} = P(\text{Successful entry}) \times E[\text{Profits} \mid \text{Successful entry}] \]

- Trade liberalization creates export opportunities that increase profit flow of successful entrants.
Trade liberalization

Free entry condition:

\[
\text{Entry cost} = \mathbb{P}(\text{Successful entry}) \times \mathbb{E}[\text{Profits} \mid \text{Successful entry}]
\]

- Trade liberalization creates export opportunities that increase profit flow of successful entrants
- Static economy: increase in exit cut-off $\rightarrow \mathbb{P}(\text{Successful entry})$ falls \rightarrow static selection effect

Dynamic Selection
26 May 2015
Free entry condition:

\[
\text{Entry cost} = \mathbb{P}(\text{Successful entry}) \times \mathbb{E}[\text{Profits} \mid \text{Successful entry}]
\]

- Trade liberalization creates export opportunities that increase profit flow of successful entrants
- Static economy: increase in exit cut-off $\rightarrow \mathbb{P}(\text{Successful entry})$ falls \rightarrow static selection effect
- With knowledge spillovers tougher selection does not affect $\mathbb{P}(\text{Successful entry})$
Trade liberalization

Free entry condition:

\[\text{Entry cost} = P(\text{Successful entry}) \cdot E[\text{Profits} | \text{Successful entry}] \]

- Trade liberalization creates export opportunities that increase profit flow of successful entrants

- Static economy: increase in exit cut-off $\rightarrow P(\text{Successful entry})$ falls \rightarrow static selection effect

- With knowledge spillovers tougher selection does not affect $P(\text{Successful entry})$

- Instead free entry condition implies faster growth of exit cut-off \rightarrow fall in entrants’ expected lifespan

- Trade leads to higher growth through dynamic selection generating a new channel for gains from trade
Related literature

- Growth through technology diffusion

- Trade, growth & scale effects

- Trade & growth with heterogeneous firms
 - Baldwin & Robert-Nicoud 2008; Perla, Tonetti & Waugh 2014

- Static gains from trade
 - Atkeson & Burstein 2010; Arkolakis, Costinot & Rodríguez-Clare 2012; Melitz & Redding 2013
Overview

1. Model set-up
2. Evolution of productivity distribution
3. Balanced growth path
4. Gains from trade
5. Extensions
Environment

- $J + 1$ symmetric economies
- Single sector producing differentiated varieties
- Single consumption good – numeraire
- Continuous time
- Constant population growth $L_t = L_0 e^{nt}$
Preferences

- Representative household has dynastic preferences:

\[U = \int_{0}^{\infty} e^{-\rho t} e^{nt} \frac{c_t^{1-\frac{1}{\gamma}}}{1 - \frac{1}{\gamma}} \, dt \]

- Consumption per capita \(c_t \)
- Intertemporal elasticity of substitution \(\gamma > 0 \)
- Discount rate \(\rho > 0 \)
- Household budget constraint:

\[\dot{a}_t = w_t + r_t a_t - c_t - na_t \]

- Assets per capita \(a_t \); interest rate \(r_t \)
Production

Consumption good produced under perfect competition as a CES aggregate:

\[c_t L_t = \left[\int_{\omega \in \Omega_t} q_t(\omega) \frac{\sigma - 1}{\sigma} \, d\omega \right]^{\frac{\sigma}{\sigma - 1}}, \quad \sigma > 1 \]

\(\Omega_t \) set of available varieties
Consumption good produced under perfect competition as a CES aggregate:

\[c_t L_t = \left[\int_{\omega \in \Omega_t} q_t(\omega) \frac{\sigma - 1}{\sigma} \, d\omega \right]^{\frac{\sigma}{\sigma - 1}}, \quad \sigma > 1 \]

\(\Omega_t \) set of available varieties

Variety production follows Melitz 2003

Each firm produces a differentiated variety

Labor is only factor of production

Monopolistic competition between firms

Heterogeneity across firms in labor productivity \(\theta \)

Fixed production cost \(f \) units of labor per period
Fixed export cost f_x units of labor per period per country

Iceberg variable trade costs τ
Static profit maximization

- Firm’s static optimization problem equivalent to Melitz 2003
- Exit cut-off:

\[
\theta_t^* = \frac{\sigma \frac{\sigma}{\sigma - 1}}{\sigma - 1} \left(\frac{fW_t^\sigma}{C_tL_t} \right)^{\frac{1}{\sigma - 1}}
\]
Firm’s static optimization problem equivalent to Melitz 2003

Exit cut-off:

\[\theta_t^* = \frac{\sigma}{\sigma - 1} \left(\frac{fW_t^\sigma}{c_tL_t} \right)^{\frac{1}{\sigma - 1}} \]

Normalize productivity relative to the exit cut-off:

\[\phi_t \equiv \frac{\theta}{\theta_t^*} \]

Exit when \(\phi_t < 1 \)

Export when \(\phi_t \geq \tau \left(\frac{f_x}{f} \right)^\frac{1}{\sigma - 1} \equiv \tilde{\phi} \)
Entry cost f_e denominated in labor units

Entrant draws productivity:

$$\theta = x_t \psi$$

x_t function of incumbent productivity distribution $G_t(\theta)$

ψ stochastic component with distribution $F(\psi)$
Entry 1

- Entry cost f_e denominated in labor units
- Entrant draws productivity:

$$\theta = x_t \psi$$

x_t function of incumbent productivity distribution $G_t(\theta)$

ψ stochastic component with distribution $F(\psi)$

- x_t captures knowledge spillovers from incumbents to entrants
- Assume x_t equals average productivity of incumbents
 1. x_t is a location statistic such that if $G_{t_1}(\theta) = G_{t_0}(\frac{\theta}{\kappa})$ then $x_{t_1} = \kappa x_{t_0}$
 2. x_t is independent of the mass of incumbent firms
 3. x_t is independent of the frontier productivity

- Upwards shift of incumbent firm productivity distribution leads to spillovers that benefit future entrants
Entry & diffusion

\[\text{Incumbents}_t \]

\[\text{Entrants}_t \]

Density

\[\theta \]
Entry & diffusion

\[\text{Density} \]

\[\text{Entrants}_t \quad \text{Incumbents}_t \quad \text{Incumbents}_{t+1} \]

\[\theta \]
Entry & diffusion

Density

Incumbents_\text{t}

Incumbents_\text{t+1}

Entrants_\text{t}

Entrants_\text{t+1}

\theta
Free entry

Costless financial intermediation sector pools entry risk across households

Assume productivity remains constant after entry
Free entry

Costless financial intermediation sector pools entry risk across households

Assume productivity remains constant after entry

Alternative assumption that leads to same balanced growth path properties in baseline model is:

\[x_t \text{ constant}, \quad F = G_t \]

Captures technology diffusion when each entrant is randomly matched with an incumbent producer and learns incumbent’s technology
Dynamics of ϕ:

$$\phi_{t+\Delta} = \frac{\theta_t^*}{\theta_{t+\Delta}^*} \phi_t$$
Productivity distribution dynamics 1

- Dynamics of ϕ:

$$\phi_{t+\Delta} = \frac{\theta^*_t}{\theta^{*}_{t+\Delta}} \phi_t$$

- Evolution of relative productivity distribution $H_t(\phi)$:

$$M_{t+\Delta} H_{t+\Delta}(\phi) = M_t \left[H_t \left(\frac{\theta^*_t}{\theta^*_{t+\Delta}} \phi \right) - H_t \left(\frac{\theta^*_t}{\theta^*_t} \right) \right] + \Delta R_t \left[F \left(\frac{\phi \theta^*_t}{x_t} \right) - F \left(\frac{\theta^*_t}{x_t} \right) \right]$$

- M_t mass of incumbent firms
- R_t flow of entrants
Taking the limit as $\Delta \to 0$ gives:

\[
\frac{\dot{M}_t}{M_t} = -H_t'(1) \frac{\dot{\theta}_t^*}{\theta_t^*} + \left[1 - F\left(\frac{\theta_t^*}{x_t}\right) \right] \frac{R_t}{M_t}
\]
Taking the limit as $\Delta \to 0$ gives:

$$\frac{\dot{M}_t}{M_t} = -H_t'(1) \frac{\dot{\theta}_t^*}{\theta_t^*} + \left[1 - F \left(\frac{\theta_t^*}{x_t} \right) \right] \frac{R_t}{M_t}$$

$$\dot{H}_t(\phi) = \left\{ \phi H_t'(\phi) - H_t'(1) \left[1 - H_t(\phi) \right] \right\} \frac{\dot{\theta}_t^*}{\theta_t^*}$$

$$+ \left\{ F \left(\frac{\phi \theta_t^*}{x_t} \right) - F \left(\frac{\theta_t^*}{x_t} \right) - H_t(\phi) \left[1 - F \left(\frac{\theta_t^*}{x_t} \right) \right] \right\} \frac{R_t}{M_t}$$
Distribution assumptions

- F Pareto:

$$F(\psi) = 1 - \left(\frac{\psi}{\psi_{\text{min}}} \right)^{-k}$$
Distribution assumptions

- F Pareto:

$$F(\psi) = 1 - \left(\frac{\psi}{\psi_{\text{min}}}\right)^{-k}$$

- Initial productivity distribution $G_0(\theta)$ has a weakly thinner tail than F:

$$\lim_{\theta \to \infty} \frac{1 - G_0(\theta)}{\theta^{-k}} = \kappa$$
Distribution assumptions

- F Pareto:

$$F(\psi) = 1 - \left(\frac{\psi}{\psi_{\text{min}}} \right)^{-k}$$

- Initial productivity distribution $G_0(\theta)$ has a weakly thinner tail than F:

$$\lim_{\theta \to \infty} \frac{1 - G_0(\theta)}{\theta^{-k}} = \kappa$$

- Define:

$$\lambda = \frac{x_t \psi_{\text{min}}}{\theta_t^*}$$

Assume $\lambda \leq 1$

- λ measures the strength of knowledge spillovers
Solve for a balanced growth path (BGP) equilibrium on which:

1. Households maximize utility subject to their budget constraints
2. Firms maximize static profits conditional on their productivity levels
3. Free entry
4. Asset, labor and output markets clear
5. Evolution of M_t and $H_t(\phi)$ as above
6. $c_t, a_t, w_t, r_t, \theta_t^*, W_t(\phi), M_t$ and R_t grow at constant rates
7. Relative productivity distribution is stationary
Unique stationary relative productivity distribution is Pareto:

\[H(\phi) = 1 - \phi^{-k} \]

Knowledge spillovers on BGP:

\[x_t = \frac{k}{k - 1} \theta_t^* \implies \lambda = \frac{k}{k - 1} \psi_{\text{min}} \]

And entrants obtain relative productivity draws:

\[\tilde{H}(\phi) = F \left(\frac{\phi \theta_t^*}{x_t} \right) = H \left(\frac{\phi}{\lambda} \right) \]

Assumption on \(G_0(\theta) \) implies \(H_t(\phi) \) converges to Pareto in any economy with positive productivity growth.
Sources of growth

- Let $g = \frac{\dot{\theta}^*}{\theta^*_t}$ be the dynamic selection rate
- Firm relative productivity ϕ_t declines at rate g
- Let $\frac{\dot{c}_t}{c_t} = q$. Differentiating definition of exit cut-off gives:
 \[q = g + \frac{n}{\sigma - 1} \]

Two sources of growth

1. Dynamic selection: growth of exit cut-off causes productivity distribution to shift outwards as a traveling wave and raises average productivity
2. Population growth drives expansion in mass of varieties produced:
 \[\frac{\dot{R}_t}{R_t} = \frac{\dot{M}_t}{M_t} = n \]
Dynamic selection

- What determines the dynamic selection rate?

- Free entry condition:

\[f_{eiw_t} = \int_{\phi} W_t(\phi) dH \left(\frac{\phi}{\lambda} \right) \]

\[= \int_{\phi} \left[\int_{t}^{\infty} \pi_v(\phi_v) e^{-(v-t)r} dv \right] dH \left(\frac{\phi}{\lambda} \right) \]

Because of technology diffusion, entrants draw relative productivity from stationary distribution. Increased profit flow \(\pi_t(\phi) \rightarrow \) higher returns to entry \(\rightarrow \) rise in \(R_t \)

Increase in dynamic selection rate shortens entrants' expected lifespan ensuring the free entry condition is satisfied.
What determines the dynamic selection rate?

Free entry condition:

\[
feW_t = \int_{\phi} W_t(\phi) dH \left(\frac{\phi}{\lambda} \right) \\
= \int_{\phi} \left[\int_{t}^{\infty} \pi_V(\phi_V) e^{-(v-t)r} dv \right] dH \left(\frac{\phi}{\lambda} \right)
\]

Because of technology diffusion entrants draw relative productivity from stationary distribution.
What determines the dynamic selection rate?

Free entry condition:

\[f_{eW_t} = \int_{\phi} W_t(\phi) dH \left(\frac{\phi}{\lambda} \right) \]

\[= \int_{\phi} \left[\int_{\pi}^{\infty} \pi_v(\phi_v)e^{-(v-t)r} dv \right] dH \left(\frac{\phi}{\lambda} \right) \]

Because of technology diffusion entrants draw relative productivity from stationary distribution

Increased profit flow \(\pi_t(\phi) \rightarrow \) higher returns to entry \(\rightarrow \) rise in \(\frac{R_t}{M_t} \rightarrow \) increase in \(g \)
Dynamic selection

- What determines the dynamic selection rate?
- Free entry condition:

\[
f_{eW_t} = \int_{\phi} W_t(\phi) dH \left(\frac{\phi}{\lambda} \right)
\]

\[
= \int_{\phi} \left[\int_{0}^{\infty} \pi_v(\phi_v) e^{-(v-t)r} dv \right] dH \left(\frac{\phi}{\lambda} \right)
\]

- Because of technology diffusion entrants draw relative productivity from stationary distribution
- Increased profit flow \(\pi_t(\phi) \rightarrow \) higher returns to entry \(\rightarrow \) rise in \(\frac{R_t}{M_t} \rightarrow \) increase in \(g \)
- Increase in dynamic selection rate shortens entrants’ expected lifespan ensuring the free entry condition is satisfied
\[
\pi_t(\phi) = \pi_t^d(\phi) + \pi_t^x(\phi) I[\phi \geq \tilde{\phi}] \\
= f w_t \left(\phi_t^{\sigma - 1} - 1 \right) + f J^{1 - \sigma} \tau w_t \left(\phi^{\sigma - 1} - \tilde{\phi}^{\sigma - 1} \right) I[\phi \geq \tilde{\phi}]
\]

1. Trade integration (higher \(J \), lower \(\tau \), lower \(f_x \)) creates new profit opportunities and raises \(g \)
\[
\pi_t(\phi) = \pi_t^d(\phi) + \pi_t^x(\phi) I[\phi \geq \tilde{\phi}]
\]
\[
= f w_t \left(\phi_t^{\sigma-1} - 1 \right) + f J T^{1-\sigma} w_t \left(\phi^{\sigma-1} - \tilde{\phi}^{\sigma-1} \right) I[\phi \geq \tilde{\phi}]
\]

1. Trade integration (higher \(J \), lower \(\tau \), lower \(f_x \)) creates new profit opportunities and raises \(g \)

2. Higher \(f \) increases profit flow and raises \(g \)
 - Profit flow increases due to lower static competition caused by reduction in level of \(M_t \)
The world economy has a unique balanced growth path on which consumption per capita grows at rate:

\[q = \frac{\gamma}{1 + \gamma(k-1)} \left[\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} \left(1 + J\tau^{-k} \left(\frac{f}{f_x} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right) + \frac{kn}{\sigma - 1 - \rho} \right]. \]

- Existence of equilibrium assumes parameter restrictions such that \(g > 0 \) and transversality condition holds.
- Growth rate increasing in: \(n, \gamma, \lambda, f, J \)
- Growth rate decreasing in: \(\rho, f_e, f_x, \tau \)
No scale effects

- Growth rate is independent of population L_t
- Both R_t and M_t are proportional to L_t, but:

\[g = \frac{1}{k} \left(\lambda^k \frac{R_t}{M_t} - n \right) \]

- Larger population increases the number of varieties produced without generating knowledge spillovers (cf. Young 1998)
- In first generation endogenous growth theory trade affects growth because of scale effects and international knowledge spillovers (Grossman & Helpman 1991). Both are absent from this model
BGP welfare depends on initial consumption level \(c_0 \) and per capita consumption growth rate \(q \).

No transition dynamics since \(H(\phi) \) independent of trade integration.

Gains from trade \(z \) defined by:

\[
U \left(zc^A_0, q^A \right) = U (c_0, q)
\]

“A” superscript denotes autarky.

Decompose gains from trade into two components \(z = z^s z^d \) where:

1. Static gains \(z^s \) – welfare gains holding \(q \) constant
2. Dynamic gains \(z^d \) – welfare gains from higher \(q \)
Static gains from trade

\[z^S = \left[1 + J_T^{-k} \left(\frac{f}{f_X} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right]^{\frac{1}{k}} \]

- \(z^S \) equals total gains from trade in Melitz 2003 if entrants draw productivity from a Pareto distribution.
- \(z^S \) equals total gains from trade in this paper if there are no knowledge spillovers.
- Calibrated value of static gains same as in Arkolakis, Costinot & Rodríguez-Clare 2012:

\[z^S = \left(\frac{1}{1 - IPR} \right)^{\frac{1}{TE}} \]
Higher growth raises welfare conditional on c_0, but has ambiguous effect on c_0

- Reallocation of labor from production to entry has negative effect on c_0
- Higher marginal propensity to consume wealth raises c_0 if and only if $\gamma < 1$

But net effect of q on z^d is always strictly positive

Dynamic selection effect raises the gains from trade
Dynamic gains from trade

- Higher growth raises welfare conditional on c_0, but has ambiguous effect on c_0
 - Reallocating labor from production to entry has negative effect on c_0
 - Higher marginal propensity to consume wealth raises c_0 if and only if $\gamma < 1$

- But net effect of q on z^d is always strictly positive

- Dynamic selection effect raises the gains from trade

- Why does positive effect of trade on growth increase welfare?
 - Selection has a positive externality on the productivity of future entrants
 - Trade exploits the technology diffusion externality by increasing the dynamic selection rate
Quantifying the gains from trade

- Calibrate model using U.S. data
- Calibration uses 3 observables and 4 parameters

<table>
<thead>
<tr>
<th>Observable/parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import penetration ratio IPR</td>
<td>0.081</td>
<td>U.S. import penetration ratio in 2000</td>
</tr>
<tr>
<td>Firm creation rate NF</td>
<td>0.116</td>
<td>U.S. Small Business Administration 2002</td>
</tr>
<tr>
<td>Population growth rate n</td>
<td>0.011</td>
<td>U.S. average 1980-2000</td>
</tr>
<tr>
<td>Trade elasticity k</td>
<td>7.5</td>
<td>Anderson and Van Wincoop (2004)</td>
</tr>
<tr>
<td>Elasticity of substitution across goods</td>
<td>σ</td>
<td>$\sigma = k/1.06 + 1$ to match right tail index of employment distribution</td>
</tr>
<tr>
<td>Intertemporal elasticity of substitution</td>
<td>γ</td>
<td>0.33</td>
</tr>
<tr>
<td>Discount rate ρ</td>
<td>0.04</td>
<td>García-Peña and Turnovsky (2005)</td>
</tr>
</tbody>
</table>
IPR & gains from trade

Total gains
Dynamic gains
Static gains

Welfare gains from trade (%)
Import penetration ratio

Thomas Sampson (LSE)
Dynamic Selection
26 May 2015
Robustness

Thomas Sampson (LSE) Dynamic Selection 26 May 2015
Extensions

1. International knowledge spillovers
2. Non-Pareto productivity distribution & frontier growth
3. Firm level productivity dynamics
4. Technology diffusion to incumbents
Conclusions

- Introduce technology diffusion into an open economy model with heterogeneous firms
- Selection on productivity leads to endogenous growth through spillovers from incumbent firms to entrants
- Because of free entry trade raises the dynamic selection rate and increases growth
- Gains from trade larger than in static steady state open economy models
- In baseline calibration trade raises growth by 11% and the gains from trade are 3.2 times higher than in static models
Profits & firm value

- Profit flow from domestic sales:
 \[\pi^d_t(\phi_t) = fW_t \left(\phi_t^{\sigma-1} - 1 \right) \mathbb{I} [\phi_t \geq 1] \]

- Profit flow from exports:
 \[\pi^x_t(\phi_t) = J^{1-\sigma} fW_t \left(\phi_t^{\sigma-1} - \tilde{\phi}^{\sigma-1} \right) \mathbb{I} [\phi_t \geq \tilde{\phi}] \]

- Firm value:
 \[W_t(\phi_t) = \mathbb{E} \left[\int_t^\infty \pi_\tau(\phi_\tau) \exp \left(-\int_t^\tau r_s ds \right) d\tau \right] \]
Parameter restrictions

To ensure \(g > 0 \) assume:

\[
\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} > \rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1}
\]

To ensure transversality condition holds assume:

\[
\frac{(1 - \gamma)(\sigma - 1)}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} \left[1 + J_T^{-k} \left(\frac{f}{f_x} \right)^{\frac{k + 1 - \sigma}{\sigma - 1}} \right] > \gamma k(n - \rho) - (1 - \gamma) \frac{k + 1 - \sigma}{\sigma - 1} n
\]
On BGP:

\[\dot{a}_t = \dot{w}_t = \dot{c}_t = q \]

Household utility maximization implies Euler equation:

\[q = \gamma (r - \rho) \]

Free entry requires:

\[q = kg + r - \frac{\sigma - 1}{k + 1 - \sigma} \chi^k \left(f + Jf_x \phi^{-k} \right) \]

Labor market clearing:

\[L_t = \frac{k\sigma + 1 - \sigma}{k + 1 - \sigma} M_t f \left[1 + J^{\tau-k} \left(\frac{f}{f_x} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right] + R_t f_e \]
Household welfare on BGP:

\[U = \frac{\gamma}{\gamma - 1} \left[\frac{\gamma c_0^{\gamma - 1}}{(1 - \gamma)q + \gamma(\rho - n)} - \frac{1}{\rho - n} \right] \]

Initial consumption:

\[c_0 = A_1 f^{-\frac{k + 1 - \sigma}{k(\sigma - 1)}} \left[1 + J_T^{-k} \left(\frac{f}{f_x} \right)^{\frac{k + 1 - \sigma}{\sigma - 1}} \right]^{\frac{1}{k}} \]

\[\times \left[1 + \frac{\sigma - 1}{k\sigma + 1 - \sigma} \frac{n + gk}{n + gk + \frac{1 - \gamma}{\gamma}q + \rho - n} \right]^{-\frac{k\sigma + 1 - \sigma}{k(\sigma - 1)}} \]

\[A_1 \equiv (\sigma - 1) \left(\frac{k}{k + 1 - \sigma} \right)^{\frac{\sigma}{\sigma - 1}} \left(\frac{k + 1 - \sigma}{k\sigma + 1 - \sigma} \right)^{\frac{k\sigma + 1 - \sigma}{k(\sigma - 1)}} \hat{\theta}_0^* \hat{M}_0^{\frac{1}{k}} L_0^{\frac{k + 1 - \sigma}{k(\sigma - 1)}} \]
Firm creation rate:

\[NF = \lambda^k \frac{R_t}{M_t} \]
\[= n + gk \]

Fixed costs:

\[\frac{\lambda^k f}{f_e} = \frac{k + 1 - \sigma}{\gamma k (\sigma - 1)} (1 - IPR) \left\{ \left[1 + \gamma (k - 1) \right] (NF - n) + \frac{k (1 - \gamma)}{\sigma - 1} n + \gamma k \rho \right\} \]
Baseline calibration results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate - trade</td>
<td>q</td>
</tr>
<tr>
<td>Growth rate - autarky</td>
<td>q^A</td>
</tr>
<tr>
<td>Growth (trade vs. autarky)</td>
<td>q/q^A</td>
</tr>
<tr>
<td>Consumption level (trade vs. autarky)</td>
<td>c_0/c_0^A</td>
</tr>
<tr>
<td>Static gains from trade</td>
<td>z^s</td>
</tr>
<tr>
<td>Dynamic gains from trade</td>
<td>z^d</td>
</tr>
<tr>
<td>Total gains from trade</td>
<td>z</td>
</tr>
<tr>
<td>Gains from trade (total vs. static)</td>
<td>$(z-1)/(z^s-1)$</td>
</tr>
</tbody>
</table>

Table 2: Calibration results

Parameter restrictions

To ensure $g > 0$ assume:

$$1 > \gamma$$

$$\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} > \rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1}$$

To ensure transversality condition holds assume:

$$\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} > n$$
Suppose entrants learn from both domestic and foreign firms

Let x_t be average productivity of all firms that sell in the domestic market

Only difference from baseline model is:

$$\lambda = \frac{k}{k - 1} \psi_{\min} \tilde{\lambda} \quad \text{where} \quad \tilde{\lambda} \equiv \frac{1 + J\tilde{\phi}^{1-k}}{1 + J\tilde{\phi}^{-k}}$$

Trade increases λ because exporters are on average more productive than domestic firms

Increase in strength of knowledge spillovers is a second channel through which trade raises dynamic selection rate and generates dynamic gains
Let F be a differentiable cumulative distribution function with bounded support $[\psi_{\text{min}}, \psi_{\text{max}}]$.

Assume $x_t = x_{\theta_t}^*$ where $x_{\psi_{\text{min}}} \leq 1$ and $x_{\psi_{\text{max}}} > 1$.

Assume initial productivity distribution $G_0(\theta)$ is bounded above.

Productivity growth results from increases in both the lower and upper bounds of the productivity distribution.
Entry & frontier growth

\[\theta \]

Incumbents_t

Entrants_t

Density

\[\theta \]
Entry & frontier growth

\[\text{Density} \]

\[\text{Incumbents}_t \]
\[\text{Entrants}_t \]
\[\text{Incumbents}_{t+1} \]

\[\theta \]
BGP with frontier growth

- Provided the transversality condition is satisfied and the dynamic selection rate is positive then:

 1. There exists a unique BGP on which the stationary relative productivity distribution satisfies:

\[
\phi H'(\phi) = \frac{n}{g} \left[H(\phi) - \frac{F\left(\frac{\phi}{x}\right) - F\left(\frac{1}{x}\right)}{1 - F\left(\frac{1}{x}\right)} \right] + H'(1) \frac{1 - F\left(\frac{\phi}{x}\right)}{1 - F\left(\frac{1}{x}\right)}
\]

 2. Sufficient conditions that ensure trade liberalization raises growth are:

\[
\rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1} > 0, \quad (\sigma - 1) + \frac{1 - \gamma}{\gamma} > 0
\]
Firm productivity dynamics

- Dynamic selection effect of trade robust to allowing for general firm level productivity dynamics

- Assume entrants draw both ϕ and a set of productivity growth rates ζ_t from a stationary joint distribution:

 $$\frac{\dot{\theta}_t}{\theta_t} = \zeta_t \Rightarrow \frac{\dot{\phi}_t}{\phi_t} = \zeta_t - g$$

- Allows for firm level productivity dynamics that are conditional on firm size

- Assume there exists a BGP with a positive dynamic selection rate $\gamma \leq 1$ is a sufficient, but not necessary, condition for trade integration to increase growth
Technology diffusion to incumbents

- Assume productivity of all incumbents grows at rate g

- Firm’s relative productivity is constant as technology diffusion raises the productivity of both entrants and incumbents

- Assume F Pareto, transversality condition satisfied and positive dynamic selection rate

- There exists a unique BGP on which the relative productivity distribution is Pareto and the growth rate is:

$$ q = \frac{\gamma}{1 - \gamma} \left[\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^k f}{f_e} \left(1 + J_{\tau}^{-k} \left(\frac{f}{f_x} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right) - \rho \right] $$

- $\gamma < 1$ is a necessary and sufficient condition to ensure trade integration raises growth and generates dynamic gains

- If $\gamma \geq 1$ no BGP exists
Parameter restrictions

To ensure $g > 0$ assume:

$$\frac{1}{\gamma} > \gamma$$

$$\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda f}{f_e} > \rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1}$$

To ensure transversality condition holds assume:

$$\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda f}{f_e} > n$$
Alternative extensions

1. Small open economy
 - Perfect competition
 - Homogeneous output sold at higher price in foreign markets

2. Decreasing returns to scale in R&D
 - Flow of entrants $\psi(R_t, M_t)$ where ψ homogeneous of degree one
 - Could interpret as congestion in technology adoption process

In both cases:

- Trade increases growth
- Gains from trade can be decomposed into static and dynamic components
- Dynamic gains from trade increase welfare relative to a static steady state version of the model