A NOTE ON TAX EVASION*

Luis C. Corchón**

WP-AD 91-04

* An earlier version of this paper was presented in the III Meeting of the South European Association of Economic Theory held in Bilbao, January 1982. The author is grateful to M.C. Carreras, C. Herrero, I. Ortuño, R. Repullo, A. Villar, T. Zabalza and above all F. Cowell for helpful comments. The usual caveat applies. Financial support from the Institutció Valenciana d'Estudis i Investigació and D.G.I.C.Y.T. under project PB 88-0289 is gratefully acknowledged.

** L.C. Corchón: Instituto Valenciano de Investigaciones Económicas and University of Alicante.
Editor: Instituto Valenciano de
Investigaciones Económicas, S.A.
Primera Edición Abril 1991
Impreso por KEY, S.A., Valencia.
Cardenal Benlloch, 69, 46021-Valencia.
Printed in Spain.
A NOTE ON TAX EVASION

Luis C. Corchón

ABSTRACT

In this paper we present a partial equilibrium model of tax evasion. Several equilibrium concepts are used to analyze the game of the Government against a single taxpayer.
I.- INTRODUCTION.

The problem of tax evasion arises in an economy in which every taxpayer regards the output of the Public Sector as independent of her actions and the taxpayer can be audited by the Public authority and fined, if found guilty.

Earlier contributions to the study of tax evasion in a game-theoretical framework include Sandmo (1981), Reinganum-Wilde (1985), (1986), Graetz-Reinganum-Wilde (1986), Greenberg (1985), Benjamini-Maital (1985), Schlicht (1985), Mookherjee-Pung (1986), Scotchmer (1987), Border-Sobel (1987) and Ortuño-Roemer (1990). Each of these papers focuses on the problem from a different angle, and obtains some conclusions on the welfare effects of tax evasion (a review of this literature can be found in Cowell (1985) and (1990) and Mookherjee (1989)). In all these papers, evasion is modeled as a continuous variable, i.e. the range of evasion goes from zero to the value of due taxes.

This paper presents a static partial equilibrium model of tax evasion in which there are only two pure strategies for each player: for the taxpayer to pay due taxes or to evade and for the Government to audit or not to audit\footnote{In this sense our approach is akin to models of externality causing behavior (see Mookherjee (1989)) or Inspector Vs. Evader games (see Rapoport (1966)). Other examples of these situations are black markets, economics of crime (see Becker (1968)), X-inefficiency, etc. This approach does not allow for (2) Also players are considered to be risk-neutral. However it can be shown that most of our conclusions do not depend on this. See Corchón (1984).}{1}.
taxpayers' partial evasion—although a mixed strategy for the taxpayer may be interpreted as partial evasion. This may be justified by two different reasons.

Firstly this kind of dichotomous decision is appropriate for deciding whether or not to work in the black economy (see Cowell (1985) p. 174 footnote). Secondly, in the case of an income tax, if someone decides to fill a tax form underestimating his income, additional information is also emitted: profession, address, etc. In some cases these signals may be so clear that it would be preferable not to fill this form at all. This reason is particularly important in countries in which the fight against tax evasion is new and the Public Sector is relatively unorganized. For instance during the period 1983-89 two million new taxpayers were discovered in Spain.

The rest of the paper goes as follows. In Section 2 we analyze the game of the Government against a single taxpayer assuming that the Government attempts to maximize net revenue (this assumption is also made by Graetz-Reinganum-Wilde (1986) and Border-Sobel (1987)). It is shown that

a) There is no Nash equilibrium in pure strategies, but there is in mixed ones. This implies that the existing uncertainty is endogenous, caused by the randomized choices of the players

b) In expected terms the taxpayer pays the entire tax

c) An increase in the penalty for evasion increases the Government's payoff but leaves untouched the taxpayer's expected utility

d) The Government cannot expect any gain by announcing (and being committed to) its true policy (i.e. being a Stackelberg leader)

e) If the taxpayer were assumed to be a leader and the Government a follower, the payoffs for the latter would be larger than in a Nash Equilibrium and, given result b) above, than in a Stackelberg Equilibrium with the Government as a leader

f) Maximin strategies call for honest behavior on the taxpayers' part and the same probability of auditing as in a Nash Equilibrium

g) If the penalty for evasion is sufficiently high, the Nash equilibrium is arbitrarily close to the core of the game.

h) Bayesian Equilibrium yields identical qualitative conclusions to those of Nash Equilibrium.

Needless to say, all these conclusions must be tested in more general models before any definitive conclusion is reached. In any case our approach underlines the importance of mixed strategies. They are a natural device in our framework, since the classical argument in favor of mixed strategies, namely that they defend players against the opponent's exploitation of the knowledge of her actions, seems perfectly applicable in our case.

Finally, Section 3 gathers our main conclusions.
2.- THE MODEL AND THE MAIN RESULTS

Consider a game with two players (\(\mathcal{P}\), the taxpayer, and \(\mathcal{S}\), the Government), and two strategies for each of them (\(A_1, A_2\) and \(B_1, B_2\) respectively). We identify \(A_1\) with evasion (\(A_2\) no evasion) and \(B_1\) with auditing (\(B_2\) no auditing). We assume that utility is money i.e. both players are risk-neutral. Let \(Y\) be the income of \(\mathcal{P}\). The value of the tax due will be denoted by \(T\). The fine will be proportional to the evaded tax. So if \(\mathcal{P}\) cheats and is caught she gets a fine of \(dT\). We will take \(d\) and \(T\) as exogenously given. Let \(c\) be cost of auditing and conviction. We assume that \(c < dT\) (this may be interpreted as saying that the penalty for evasion includes the cost of auditing). In order to make the problem interesting we will assume that \(T > c\) (i.e. the tax due is greater than the cost of auditing) and \(Y > T\). Table I below summarizes our information about the game.
TABLE 1

\[
\begin{array}{c|cc}
& B_1 & B_2 \\
\hline
A_1 & Y-T(1+d), T(1+d)-c & Y, 0 \\
A_2 & Y-T, T-c & Y-T, T \\
\end{array}
\]

It follows from our assumptions that

\[
Y > Y - T > Y - T(1 + d) > T(1 + d) - c > T > T - c > 0
\]

Hence no dominant strategy exists.

2.1.- NASH EQUILIBRIUM.

We first assume that both players have to move simultaneously and that information is complete. Both assumptions will be relaxed later on. Let us first look for a Nash Equilibrium. It is easy to check that there is no Nash Equilibrium in pure strategies. Therefore we introduce mixed strategies. Let \(p \) be the probability of \(\mathcal{P} \) taking \(A_1 \) (i.e. she evades), and \(q \) the probability of
\(\mathcal{S} \) taking \(B_1 \) (i.e. auditing). Then payoffs for \(\mathcal{P} \) and \(\mathcal{S} \) (denoted respectively by \(M_p \) and \(M_s \)) are

\[
M_p = p \left(q(Y - T(1+d)) + (1-q)Y \right) + (1-p) \left(q(Y - T) + (1-q)(Y - T) \right)
\]

\[
M_s = q \left(p(T - c+dT) + (1-p)(T-c) \right) + (1-q)(1-p)T
\]

\[
M_p = p \left(T - q \cdot T (1+d) \right) + Y - T \quad (1)
\]

\[
M_s = q \left(p \cdot T (1+d) - c \right) + (1-p)T \quad (2)
\]

Then, the probabilities associated with a Nash equilibrium are

\[
p^* = \frac{c}{T(1+d)}
\]

\[
q^* = \frac{1}{1 + d}
\]

The strategic aspects of the game are present in the value of \(p^* \) and \(q^* \). For instance the probability of evading depends directly on \(c \) (the more costly it is to audit, the more likely the evasion) and inversely on the penalty \(d \). Also, the probability of auditing depends inversely on the penalty, since a high penalty will discourage evasion, making auditing useless (see Graetz- Reinganum-Wilde (1986) for similar conclusions). Equilibrium payoffs are
\[M^*_p = Y - T \]

\[M^*_g = T - \frac{c}{1 + d} \]

Notice that:

1. An increase in the penalty rate \(d \) does not affect \(M^*_p \), but it does affect (positively) \(M^*_g \). Hence an increase of \(d \) implies a Pareto improvement. This result has been obtained (among others) by Graetz-Reinganum-Wilde (1986).

2. The expected utility of \(P \) equals truthful payment of due taxes.

3. Taxation is not bounded by evasion (since \(\frac{\partial M^*_g}{\partial T} = 1 \), contradicting Edgeworth (1925) ("In fine the increase of taxation is limited by evasion").

4. An increase in \(T \) causes a fall in \(p \), i.e. more taxes calls for more honest behavior. The reason for this is that if \(p^* > \frac{c}{T(1+d)} \), \(g \) will always investigate. Therefore \(P \) should decrease \(p \) in order to preserve the benefits of random evasion.

5. It is easily seen that \(p^* < q^* \), and \(1-q^* > p^* \). Therefore \(p^* < 1/2 \).
2.2. THE STACKELBERG SOLUTION.

Sometimes it is argued that "the government, via its agent the tax authority, acts as a "leader", and that taxpayers act as recalcitrant followers" (Cowell (1990) p. 123). This corresponds to a situation in which \mathcal{F} moves first announcing (and being committed to) some strategy, and \mathcal{P} reacts in a rational way. This equilibrium is called a Perfect Nash Equilibrium in modern jargon. Here we will show that the Nash Equilibrium considered in the previous paragraph is also a Stackelberg Equilibrium with \mathcal{F} as a leader and \mathcal{P} as a follower.

For the time being assume that no mixed strategy is possible. Hence \mathcal{F} will maximize over the reaction function of \mathcal{P}. A quick inspection of Table I shows that (B_1, A_2) and (B_2, A_1) are the possible outcomes. Hence \mathcal{F} will select B_1 and the associated payoffs will be $(Y - T, T - c)$. Notice that the equilibrium payoff of \mathcal{F} is in this case $T - c < \text{Nash payoff}$. Now, let us introduce mixed strategies. If \mathcal{F} sets $q > \frac{1}{1 + d}$ from (1) it follows that $p = 0$. Then $M = T - c < T - \frac{c}{1 + d} = \text{Nash payoff}$. If \mathcal{F} sets $q < \frac{1}{1 + d}$ by identical reasoning to before, the optimal reply of \mathcal{P} is $p = 1$. Then, $M = \frac{c}{1 + d} < T - \frac{1}{1 + d} = \text{Nash payoff}$, so $q = \frac{1}{1 + d}$ is the optimal choice.

Therefore, even if mixed strategies are played, it does not pay for \mathcal{F} to be a Stackelberg leader. This is pretty surprising at first glance, since it implies that there is no incentive for \mathcal{F} to commit himself. However a little reflection on the structure of the game will convince the reader that...
this is indeed the case. If for instance \mathcal{F} announces B_1, \mathcal{P} will pay T. However \mathcal{F} can expect this to happen if an adequate randomized (and hence cheaper) auditing is made. If \mathcal{F} announces B_2, \mathcal{P} will not pay anything. If \mathcal{F} announces a randomized strategy which is not a Nash Equilibrium for him, equations (1) and (2) in p.6 show that \mathcal{P} will evade or will pay completely. The first case is certainly not intended by \mathcal{F}, and the latter can be achieved with a lower q, and hence with a lower expected cost. In other words, given the discontinuity in \mathcal{P}'s behavior, the expected return of tax evasion should be zero, just like in the Nash equilibrium. This contrasts with Graetz-Reinganum-Wilde (1986) where \mathcal{F}'s lack of commitment causes a loss in revenue.

Finally, let us assume that \mathcal{P} is a leader and \mathcal{F} is a follower. This corresponds to a situation in which \mathcal{P} has to send her report before \mathcal{F} can take any action. Since $T(1+d) > c$ the taxpayer will pay his entire taxes. Thus, this equilibrium gives more utility to \mathcal{F} than any other non cooperative solution. Notice that in this case mixed strategies do not make any sense.

2.3.- **MAXIMIN BEHAVIOR**

In our case, Nash Equilibrium can be objected to on grounds of being *unprofitable* (see Harsanyi (1966)), i.e. Nash Equilibrium payoffs are equal to maximin payoffs but Nash strategies are different from maximin strategies. In this case, it can be argued that maximin behavior is more plausible (see Holler (1990) p. 322 and the references therein). Thus it seems sensible to analyze the consequences of assuming maximin behavior. From equations (1) and
(2) it follows that maximin strategies are \(p^+ = 0 \) and \(q^+ = 1/(1+d) \), i.e., \(P \) is honest and \(S \) audits with the same probability as in a Nash Equilibrium.

2.4. THE COOPERATIVE APPROACH.

In our framework, any non-cooperative equilibrium yields inefficient outcomes. Thus both parties have incentive to negotiate. Therefore we now consider cooperative behavior.

Let us take the core as the solution concept. From Section 2.3 above, it follows that \(S \) can guarantee himself \(T - \frac{c}{1 + d} \) and \(P \), \(Y - T \). Hence \((A_2', B_2')\) is in the core of this game, as well the line \((A, (A_2', B_2'))\) in Figure 1. Notice that the core in pure strategies coincide with the Stackelberg equilibrium with \(P \) as leader. Notice too that when \(c / (1 + d) \rightarrow 0 \), (i.e. either the cost of auditing tends to be zero or the penalty becomes very high) we have that

a) The Nash Equilibrium (but not the Stackelberg equilibrium with \(S \) as a leader in pure strategies) tends to the core. Hence a high penalty will implement a core outcome through a Nash equilibrium, approximately, and

b) the core shrinks towards \((T, Y - T)\).
2.5. **Bayesian Equilibrium.**

The previous analysis can be criticized since under complete information it is not at all clear which kind of tax evasion is captured by the model. There are two possible answers to this question. On the one hand, mixed strategies can be understood as the limit of Bayesian Equilibrium, when uncertainty over types becomes negligible (see Harsanyi (1973)). On the other hand, under simultaneous moves, those tax payers who evade can get away with it in absence of auditing. The same happens if S moves first. So tax evasion arises from wrong auditing and not from incomplete information. This is also seen by noting that evasion is impossible if P plays first. Here we will consider explicitly a game with incomplete information in order to see what difference it makes. It will be shown that conclusions obtained under complete information are carried out with straightforward modifications. This reinforces our idea that tax evasion is due to imperfect, rather than, incomplete information.

For the sake of simplicity suppose that S is uncertain about the true value of the tax due, but P is not, i.e. we assume one-sided uncertainty. This can be formalized by saying that P can be of types 1,...,n with taxes due $t_1,...,t_n$ and that P knows her true type but S does not. Let us assume that the probability of P being of type $i = 1,...,n$ -denoted by π_i- is common knowledge. Let $t = \sum_{i=1}^{n} \pi_i t_i$ be the expected value of taxes due.
We first notice that the optimal strategy set by P is independent of her type and identical to the Nash equilibrium case. This follows from the fact that fines are proportional to taxes due and therefore the utility function of P if she were of type i is $t_i p (1- q (1+d)) + Y_i - t_i$ where Y_i is her income.

Thus if $1 >$ (resp. $<)$ $q(1+d)$ the optimal p is 1 (resp. 0). If $1 = q(1+d)$ any p maximizes the above expression. Since the optimal probability is independent of the type, we will denote it by p as before.

When playing against type i \mathcal{G} can expect a payoff of

$$ q \left(p t_i (1+d) - c \right) + (1-p) t_i $$

Therefore expected payoffs for \mathcal{G} are

$$ M = \sum_{i=1}^{n} \pi_i \left(q \left(p t_i (1+d) - c \right) + (1-p) t_i \right) $$

And from this equation we obtain the result that if $t(1+d) > c$, in any Bayesian Equilibrium with simultaneous reports and audits

$$ p' = \frac{c}{t(1+d)} $$

$$ q' = \frac{1}{1 + d} $$

Then it is easy to show that all the conclusions obtained in Sections 2.1 - 2.4 carry on under incomplete information. However - in contrast to all our previous results - the extension to non risk neutral agents is not
straightforward. See Sanchez (1987) and Scotchmer (1987) for additional results with risk-neutral taxpayers. Finally if $t(1+d) < c$, i.e. if expected profit from an auditing is negative, equilibrium entails $p = 1$ and $q = 0$.
3.- FINAL COMMENTS.

In this paper we have considered a simple model of strategic interaction between taxpayers and the Government. Only two strategies by player are considered and the game is static. Moreover, we do not study how taxes are set i.e. in terminology of Cowell ((1990) p. 131) we focus on pure enforcement. However some conclusions appear to be robust enough to be worth mentioning.

Firstly, the probability of auditing is the same in Nash, Stackelberg (with \mathcal{S} as a leader), Maximin and Bayesian Equilibria.

Secondly, the probability of evading is the same (and positive) in Nash, Stackelberg (with \mathcal{S} as a leader), and Bayesian Equilibria. However in both Maximin and Stackelberg (with \mathcal{P} as a leader) the taxpayer is honest.

Thirdly, the payoff of \mathcal{P} in every non-cooperative equilibrium is the same as if she were honest.

Fourthly, a high penalty for evaders is (as in many models of tax evasion) socially desirable. Of course introducing a probability of error in convictions (see Bolton (1986)) may yield an appropriate upper bound to penalties (see Nalebuff-Scharfstein (1987) for cases in which this is not the case and an infinite penalty is socially desirable).
Fifthly, tax evasion is due to imperfect, rather than incomplete, information.

Sixthly, revenues from taxes are maximized when \mathcal{Y} is a follower and \mathcal{P} is a Stackelberg leader.

How should the last result be interpreted? Since present day Governments can scarcely be considered as maximizing agents, the emphasis must be on the normative side. In this sense, our analysis recommends \mathcal{Y} to behave as a follower (it must be remarked that there is nothing surprising in the fact that payoffs for the Government are higher for a follower than for a leader: The same happens in models of price-making firms in Industrial Organization). However this kind of solution makes sense if reports are sent before \mathcal{Y} takes any action. This implies a delay which may be unacceptable because of legal constraints or because of high interest and/or inflation rates. Even though, in some countries -i. e. Spain-, a report can be audited five years after it was produced. Notice that an important consequence of all this is that when modeling tax evasion ‘a la Principal-Agent’ (in which \mathcal{Y} acts as a leader) we are not exploring the best alternative from \mathcal{Y}’s point of view.

Finally we mention two possible extensions of our work. 1) To model explicitly the interests of auditors (see Laffont- Tirole (1988)) and 2) to consider evasion and consumption in an unified framework (see Andersen (1977), Sandmo (1981) and Cowell (1981)).
REFERENCES.

PUBLISHED ISSUES

FIRST PERIOD

1 "A Metatheorem on the Uniqueness of a Solution"

2 "Comparing Solution of Equation Systems Involving Semipositive Operators"

3 "Static and Dynamic Implementation of Lindahl Equilibrium"

4 "Efficiency and Non-linear Pricing in Nonconvex Environments with Externalities"

5 "A Locally Stable Auctioneer Mechanism with Implications for the Stability of General Equilibrium Concepts"

6 "Quantity Constraints as a Potential Source of Market Instability: A General Model of Market Dynamics"

7 "Increasing Returns to Scale and External Economies in Input-Output Analysis"

8 "Irregular Leontief-Straffà Systems and Price-Vector Behaviour"

9 "Equivalence Between Solvability and Strictly Semimonotonicity for Some Systems Involving Z-Functions"

10 "Equilibrium in a Non-Linear Leontief Model"

11 "Models of Unemployment, Persistent, Fair and Efficient Schemes for its Rationing"

12 "Non-Linear Models without the Monotonicity of Input Functions"

13 "The Perron-Frobenius Theorem for Set Valued Mappings"

14 "The Consumption of Food in Time: Hall's Life Cycle Permanent Income Assumptions and Other Models"
 F. Antoñazas. 1986.

15 "General Leontief Models in Abstract Spaces"
"Equivalent Conditions on Solvability for Non-Linear Leontief Systems"

"A Weak Generalization of the Frobenius Theorem"
J.A. Silva. 1986

"On the Fair Distribution of a Cake in Presence of Externalities"

"Reasonable Conjectures and the Kinked Demand Curve"

"A Proof of the Frobenius Theorem by Using Game Theory"

"On Distributing a Bundle of Goods Fairly"

"On the Solvability of Complementarity Problems Involving Vo-Mappings and its Applications to Some Economic Models"

"Semipositive Inverse Matrices"

"Complementary Problems and Economic Analysis: Three Applications"

"On the Solvability of Joint-Production Leontieff Models"

"A Characterization of Weak-Monotone Matrices"

"Intertemporal Rules with Variable Speed of Adjustment: An Application to U.K. Manufacturing Employment"

"Orthogonality Test with De-Trended Data's Interpreting Monte Carlo Results using Nager Expansions"

"On Lindahl Equilibria and Incentive Compatibility"

"Exploiting some Properties of Continuous Mappings: Lindahl Equilibria and Welfare Egalitarian Allocations in Presence of Externalities"

"Smoothness of Policy Function in Growth Models with Recursive Preferences"

"On Natural Selection in Oligopolistic Markets"
"Consequences of the Manipulation of Lindahl Correspondence: An Example"

"Egalitarian Allocations in the Presence of Consumption Externalities"

SECOND PERIOD

WP-AD 90-01 "Vector Mappings with Diagonal Images"

WP-AD 90-02 "Langrangean Conditions for General Optimization Problems with Applications to Consumer Problems"

WP-AD 90-03 "Doubly Implementing the Ratio Correspondence with a 'Natural' Mechanism"

WP-AD 90-04 "Monopoly Experimentation"

WP-AD 90-05 "Monopolistic Competition: Equilibrium and Optimality"

WP-AD 91-01 "A Characterization of Acyclic Preferences on Countable Sets"

WP-AD 91-02 "First-Best, Second-Best and Principal-Agent Problems"

WP-AD 91-03 "Market Equilibrium with Nonconvex Technologies"

WP-AD 91-04 "A Note on Tax Evasion"

WP-AD 91-05 "Oligopolistic Competition Among Groups"

WP-AD 91-06 "Mixed Pricing in Oligopoly with Consumer Switching Costs"