STABILITY OF MIXED EQUILIBRIA IN INTERACTIONS BETWEEN TWO POPULATIONS*

Alexander Vasin**

WP-AD 94-08

* This paper was prepared within period of my visit to Alicante in October of 93. I am grateful to the University of Alicante for the hospitality. I wish to express my thanks to K. Sigmund and F. Vega-Redondo for very helpful comments. This research has been supported by RFFI under project 93-012-539.

** Moscow State University, Faculty of Computational Mathematics and Cybernetics.
STABILITY OF MIXED EQUILIBRIA
IN INTERACTIONS BETWEEN TWO POPULATIONS

Alexander Vasin

ABSTRACT

This paper considers Nash equilibria of a game played by two populations. Stability of the mixed equilibria is discussed for a wide class of differential systems describing the evolutionary dynamics of behavior. The main property of the systems under consideration is that every Nash equilibrium of the game is a fixed point. The paper shows that no mixed equilibrium is linearly asymptotically stable for the autonomous systems of this class. It also establishes that linear instability of the said Nash equilibrium for an autonomous system leads to its Liapunov instability for any corresponding non-autonomous system.

KEYWORDS: Stability, Interaction, Populations.
1. INTRODUCTION

This paper discusses the limiting behavior in a wide class of dynamical systems that can be used to describe the evolution of animal or social behavior. The best-known particular instance of such systems is that of replicator dynamics.

The relationship between stable points or path limits of evolutionary models and solutions of static game theory has been widely discussed (see Bomze, 1988, van Damme, 1987, Hofbauer and Sigmund, 1988, Nachbar 1990, for the surveys of the corresponding results). Under general assumptions, both path limits and stable points correspond to Nash equilibria. The notion of ESS together with strict equilibrium give the sufficient conditions of asymptotic stability for some classes of dynamical models (see Maynard-Smith, 1982, Vasin, 1889). However, these conditions are inapplicable to non-trivial mixed equilibria of asymmetric interactions, in particular, interactions between two populations, since such equilibria are never ESS (Selten, 1980).

As far as the replicator dynamics are concerned, Schuster et al (1981) have shown that for random pair contests of two populations a non-trivial mixed equilibrium is never linearly asymptotically stable, i.e., \(\text{Re} \lambda > 0 \) for some eigenvalue \(\lambda \) of the Jacobian at this point. The present paper shows that this proposition is valid for a wide class of continuous evolutionary dynamics. The main property of the systems under consideration is
that every Nash equilibrium of any interaction model is a fixed point of the systems. I call these systems coordinated with equilibrium, or briefly s-coordinated systems. Every monotone system considered by Samuelson (1988) or Nachbar (1990) is s-coordinated if its differential operator is smooth. Furthermore, I will show that linear instability ($\text{Re } \lambda > 0$) of an equilibrium for an autonomous s-coordinated system implies its Lyapunov instability for all corresponding non-autonomous systems.

Let us note that Ritzberger and Vogelsberger (1980), and Samuelson and Zhang (1992) establish the more strong proposition for the replicator dynamics and for aggregate monotonic selection dynamics (AMSDs) respectively. They show that only strict equilibria are asymptotically stable in these evolutionary games as applied to N-player normal-form games.

However the present paper considers the essentially wider class of evolutionary dynamics. While any AMSD may be obtained from the replicator dynamics by player-specific reparametrization of time, the class of s-coordinated models includes also any smooth player-and-strategy-specific reparametrization of time in the replicator dynamics (see Section 3).

The remainder of the paper is arranged as follows. The next section defines a general model of interaction between two populations. Section 3 introduces the class of s-coordinated dynamical systems and treats some examples. Section 4 establishes
the theorem on instability of mixed equilibria. Section 5 discusses the stability of equilibria of center-type.

2. THE MODEL OF INTERACTION

Let \(X = \{X_1, \ldots, X_m\} \) and \(Y = \{Y_1, \ldots, Y_n\} \) be the sets of strategies of two populations. The two populations may be groups either of the same species or of two different species. We assume that in the considered interaction individuals of the first populations come into contact only with the second population and vice versa. At any given time each individual carries out a particular strategy. Let

\[
P(t) = (p_1(t), \ldots, p_m(t)) \in \Lambda^m = \{p \in \mathbb{R}_+^m \mid \sum p_i = 1\}
\]

and \(Q(t) = (q_1(t), \ldots, q_m(t)) \in \Lambda^n \) be frequency distributions of strategies, \(M(t) \) and \(N(t) \) - the population sizes. The payoff functions \(A_i(q(t)), \ i=1, \ldots, m, \) and \(B_j(p(t)), \ j=1, \ldots, n, \) characterize the results of the interaction for all strategies. So we consider the game \(\Gamma \) with the sets of strategies \(X \) and \(Y \) and the payoff functions \(A_i(q), B_j(p) \) as a general model of the interaction between two population.

The reader will recall that a point \((P, Q) \in \Lambda^m \times \Lambda^n\) is Nash equilibrium of \(\Gamma \) iff for any \(i, j \)

\[
(p_i > 0) \Rightarrow i \in \text{Argmax}_{u} A_u(q),
\]

\[
(q_j > 0) \Rightarrow j \in \text{Argmax}_{u} B_u(p);
\]

the equilibrium is mixed iff for every \(i, j \)
\[
p_i(t) < 1, \ q_j(t) < 1.
\]
It is easy to see that every game with continuous payoff functions has an equilibrium and, moreover, under mild assumptions on the payoff functions' independence the number of positive coordinates for \(p \) and \(q \) is the same.

The best-studied interaction is random pair contests (Schuster et al., 1981 Bomze, 1986). In this interaction contestants are drawn at random in pairs from the population \(a_{ij} \) and \(b_{ij} \) are the payoffs to individuals of populations 1 and 2 when the first plays according to strategy \(X_i \) and the second according to strategy \(Y_j \). The average payoffs \(A_i(q) = \sum_j a_{ij} q_j \), \(B_j(p) = \sum_i b_{ij} p_i \) are treated as the payoff functions. In this case, a point \((p,q)\) satisfies (1) if \((p,q)\) is Nash equilibrium of the bimatrix game with matrices \(A,B \). For some other types of interaction, the payoff functions are not linear (see for instance Maynard-Smith, 1982).

We assume further that the functions \(A_i(q) \) (resp. \(B_j(p) \)) are continuously-differentiable on the set \(\Lambda^n \) (resp. \(\Lambda^m \)).

3. THE EVOLUTIONARY MODEL

Let \(p(t) \) and \(q(t) \) change according to the system

\[
\begin{align*}
\dot{p}_i &= c(t, p(0), q(0)) \ G_i(p, A(q)), \quad i=1, \ldots, m; \\
\dot{q}_j &= d(t, p(0), q(0)) \ H_j(q, B(p)), \quad j=1, \ldots, n.
\end{align*}
\]

I term this dynamical system \(\theta \)-coordinated if it satisfies the
following conditions:

1) The functions \(G_i, i=1,\ldots,m; H_j, j=1,\ldots,n \) satisfy the equations

\[
G_i(p,A) = 0, \quad i=1,\ldots,m;
\]

\[
H_j(q,B) = 0, \quad j=1,\ldots,n,
\]

for any distributions \(p\in\Delta^m, q\in\Delta^n \) and payoff vectors \(A=(A_1,\ldots,A_m), B=(B_1,\ldots,B_n) \) such that

\[
\forall i \ (p_i>0) \Rightarrow i \in \text{Argmax} \ A_u; \quad \forall j \ (q_j>0) \Rightarrow j \in \text{Argmax} \ B_v.
\]

2) The functions \(c,d \) are measurable as functions of \(t \) and continuously-differentiable with resp. to \(p(0), q(0) \) and the derivatives are bounded uniformly by \(t \). There exist such positive \(\varepsilon_1, \varepsilon_2 \) that for every \(t\geq 0, \ p\in\Delta^m, q\in\Delta^n \ \varepsilon_1 \leq c(t,p,q),\ d(t,p,q)\leq\varepsilon_2. \)

3) The set \(\Delta^m\times\Delta^n \) is the invariant of the system (2). The functions \(G \) and \(H \) are continuously-differentiable.

Let us note that any system of the form

\[
p_i = p_i g_i(p)(A_i(q) - \sum_l p_l A_l(q)), \quad i=1,\ldots,m,
\]

\[
q_j = q_j h_j(q)(B_j(p) - \sum_l q_l B_l(p)), \quad j=1,\ldots,n,
\]

with smooth positive functions \(g,h \) meets conditions 1), 3).

Concrete examples of \(\varepsilon \)-coordinated systems are as follows.

Example 1. Non-autonomous replicator dynamics. Let \(M=(M_i=Np_i, i=1,\ldots,m) \) and \(N=(N_j=Np_j, j=1,\ldots,n) \) be a numerical distribution
of strategies. Let the functions \(\bar{F}^i_t(M(t), N(t), t), \bar{D}^i_t(M(t), N(t), t), \)
\(i = 1, \ldots, m; \) (resp. \(\bar{F}^j, \bar{D}^j, \)
\(j = 1, \ldots, n \)) determine the rates of
fertility and mortality for the strategies of the population 1
(resp. the population 2).

Children play the same strategies as their parents. For
two-sexual species such inheritance may be caused either by
learning or by genes linked with sex. Then
\[
\begin{align*}
\dot{M}_i &= M_i(\bar{F}^i_t(M, N, t) - \bar{D}^i_t(M, N, t)), \quad i = 1, \ldots, m; \\
\dot{N}_j &= N_j(\bar{F}^j_t(M, N, t) - \bar{D}^j_t(M, N, t)), \quad j = 1, \ldots, n.
\end{align*}
\]

Assume that the functions \(\bar{F}^i_t, \bar{D}^j_t \) may be expressed in the form
\[
\begin{align*}
\bar{F}^i_t(M, N, t) &= \tilde{c}(M, N, t) \bar{F}^i_t(q(t)) + \alpha^i_t(M, N, t); \\
\bar{D}^j_t(M, N, t) &= \tilde{c}(M, N, t) \bar{D}^j_t(q(t)) + \beta^j_t(M, N, t).
\end{align*}
\]

Let the initial sizes of the populations be fixed and let us
de note by \((M, N)(p(0), q(0), t)\) the solution of the system (3) with
initial distributions \(p(0), q(0) \). Let
\[
\begin{align*}
A(q) &= \bar{F}^a(q) - \bar{D}^a(q), \\
B(p) &= \bar{F}^b(p) - \bar{D}^b(p), \\
C(p(0), q(0), t) &= \tilde{c}(M, N)(p(0), q(0), t), t), \\
\bar{a}(p(0), q(0), t) &= \tilde{a}(M, N)(p(0), q(0), t), t).
\end{align*}
\]
Then the system (3) implies that the distributions $p(t)$, $q(t)$ satisfy the equations
\[
\dot{p}_i = c(p(0), q(0), t)p_i(A_i(q) - \sum_k \lambda_k A_k(q)), \quad i=1, \ldots, m; \\
\dot{q}_j = d(p(0), q(0), t)q_j(B_j(p) - \sum_u \lambda_u B_u(p)), \quad j=1, \ldots, n;
\] (4)

This system satisfies the conditions 1) and 3) and is ϵ-coordinated under general assumptions.

Example 2. The random imitation. Unlike the previous example, every new individual chooses some participant of the same population at random and imitates his strategy. Then the population dynamics are
\[
\dot{M}_i = M_i / M \sum_k M_k F^k_i - M_i D^i_k, \quad i=1, \ldots, m; \\
\dot{N}_j = N_j / N \sum_u N_u F^u_j - N_j D^u_j, \quad j=1, \ldots, n.
\]

Let the functions F^k, D^u be of the same kind as in Example 1. Then $p(t)$, $q(t)$ satisfy system (1), if we define $A_i(q) = -\bar{F}^i_i(q)$, $B_j(p) = -\bar{D}^u_j(p)$.

Example 3. The adaptive imitation. Consider interaction between two populations with the constant sizes and the payoff functions $A_i(q)$, $B_j(p)$. Let $M_i \gamma_{ik}(p(t), A(q(t)))$ (resp. $N_j \gamma_{jk}(q(t), B(p(t)))$) be the rate of transition from the strategy X_i to the strategy X_k (resp. from Y_j to Y_i) at the time t. We assume that the functions
\(\nu_{ik}, \gamma_{ik} \) are continuously-differentiable. If strategy \(A_i \) is better than strategy \(A_k \) then the rate of transition from \(A_i \) to \(A_k \) is lower than the rate of reverse transition: for every \(p, A \) \((A_i \succ A_k) \Rightarrow p_i \gamma_{ik}(p, A) \leq p_k \gamma_{ki}(p, A) \); for every \(q, B \) \((B_j \succ B_i) \Rightarrow q_j \nu_{ji}(q, B) \leq q_i \nu_{ij}(q, B) \). Then \(P(t), Q(t) \) change according to the system

\[
\dot{p}_i = \sum_{k \neq i} (p_k \gamma_{ik}(p(t), A(q(t))) - p_i \gamma_{ik}(p(t), A(q(t)))) , \quad i = 1, \ldots, m;
\]

\[
\dot{q}_j = \sum_{l \neq j} (q_l \nu_{lj}(q(t), B(p(t))) - q_j \nu_{jl}(q(t), B(p(t)))) , \quad j = 1, \ldots, n;
\]

Let us note that the system (2) may be reduced to the autonomous one:

\[
\dot{p}_i = G_i(p, A(q)) , \quad i = 1, \ldots, m , \tag{5}
\]

\[
\dot{q}_j = H_j(q, B(p)) , \quad j = 1, \ldots, n
\]

if for any \(t, P(0), Q(0) \)

\[
c(P(0), Q(0), t)/d(P(0), Q(0), t) = \alpha(P(0), Q(0)).
\]

This case takes place in the interaction between populations of constant sizes, or between individuals of the same species in two different roles; for instance, between "owners" of some resources and "intruders" (see Maynard-Smith, 1982).

4. Stability of mixed equilibria

Consider arbitrary game \(\Gamma \), \(\varepsilon \)-coordinated system (2) and the corresponding autonomous system (5). Let us remind that a fixed
point of the system (5) is called a degenerate point if some eigenvalue \(\lambda \) of the Jacobian is equal to 0; the point is a center if for every eigenvalue \(\Re \lambda < 0 \), \(|\Im \lambda| > 0 \); the point is a saddle if for some eigenvalue \(\Re \lambda > 0 \).

Theorem. Every mixed equilibrium \((P^*, Q^*)\) is either a degenerate point, or a center, or a saddle of the system (5). In the latter case \((P^*, Q^*)\) is the unstable point of the system (2) for any permissible functions \(c, d \).

The following lemmas will be used to prove the second part of the theorem.

Lemma 1. Let \((x, y)(t) = (\bar{x}, \bar{y}) \exp(\lambda t)\) be a solution of the linear system \(\dot{x} = ky, \dot{y} = px, x, y \in \Delta^m \), and \(\Re \lambda > 0 \); let \(a(t) \) be a measurable function, such that for some \(\varepsilon, \bar{\varepsilon} \) for any \(t \) \(0 < \varepsilon < a(t) < \bar{\varepsilon} \). Then the system

\[
\dot{x} = ky, \dot{y} = a(t)px
\]

has the solution \((\bar{x}, \bar{y})(t) = (c(t)\bar{x}, d(t)\bar{y})\), where \(|c(t)| \geq \exp(\Re \lambda \varepsilon^{1/2} t) \)

Proof. By substitution of \(\bar{x}, \bar{y} \) to the system (6) one obtains \(\dot{c} = \lambda \text{d}, \dot{d} = a(t)\lambda^2 \). Hence, \(\dot{c} = a(t)\lambda^2 \). Let \(\lambda = u + iv, \quad c(t) = \exp(uf(t) + ig(t)) \).

Then \(f, g \) satisfy the system

\[
\begin{align*}
\dot{f} &= a(t), \\
\dot{g} &= -uf^2 + a(t)u + v^2a(t)/u(a(t)/f^2 - 1).
\end{align*}
\]

Let \(f(0) = 0, \dot{g}(0) = \varepsilon^{1/2} \). For every \(t \), if \(\dot{f}(t) \leq \varepsilon^{1/2} \), then \(\dot{f}(t) \geq 0 \) and if \(\dot{f}(t) \geq \varepsilon^{1/2} \), then \(\dot{f} \leq 0 \). Hence, for every \(t \) \(\varepsilon^{1/2} \leq f(t) \leq \bar{\varepsilon}^{1/2} \).

13
Lemma 2. Let the linear system $\dot{W}=A(t)W$ have such a solution $\ddot{W}(t)$, that for some $u>0$ for any t, $|\ddot{W}(t)| \geq \exp(ut)|\dot{W}(0)|$. Let $A(t)$ be bounded uniformly by t. Then the point 0 is unstable for the system $\dot{W}=A(t)W+g_1(t,W)+g_2(t,W(0),W)$ for any vector-functions g_1, g_2 such that $\|g_1(t,W)/\|W\|\to 0$ as $\|W\|\to 0$, $\|g_2(t,W(0),W)\| \leq C\|W(0)\|\|W\|^2$ uniformly by t.

This proposition is analogous to the well-known theorem of Lyapunov (see, for instance, Rouche et al., theorem 5.8).

Proof of the Theorem. Let $\{t|p_i^*>0\} = \{1, \ldots, r\}$, $\{j|q_j^*>0\} = \{1, \ldots, s\}$.
We denote $R=\{2, \ldots, r\}$, $U=\{2, \ldots, s\}$, $S=\{r+1, \ldots, m\}$, $V=\{s+1, \ldots, n\}$, for any vector $W_0 \in \mathbb{R}^m$ and each ordered subset $Q\subset \{t=1, \ldots, m\}$.
$W_0 = (W_t, t \in Q)$, $\bar{p} = (p_R, p_S)$, $\bar{q} = (q_U, q_V)$. By the exclusion of the dependent variables $p_1=1-p_2-\ldots-p_m$, $q_1=1-q_2-\ldots-q_n$ the system (5) is transposed to the form

$$\ddot{p} = G(p, A(q)), \quad \ddot{q} = H(q, B(q)).$$

Let us compute the Jacobian at the point (p^*, q^*). For every $t \in S$, $k \in R$, $j \in V$ for any small enough Δp_k

$$\frac{\partial G_i}{\partial p_k}(p^*, q^*) + \frac{\partial G_i}{\partial p_k}(\Delta p_k, A(q^*)) \geq 0,$$

$$\frac{\partial H_j}{\partial p_k}(q^*, B(p^*, \Delta p_k)) \geq 0,$$

according to the condition 3); here $\frac{\partial G_i}{\partial p_k}$ is the corresponding unit vector. Hence, \begin{align*}
\frac{\partial G_i}{\partial p_k}(p^*, q^*) & = \frac{\partial G_i}{\partial p_k}(p^*, q^*) \geq 0. \quad \text{Similarly, for} \end{align*}
every \(l \in U, \quad \frac{\partial H_i}{\partial q_l}(p^*, q^*) = \frac{\partial G_i}{\partial q_l}(p^*, q^*) = 0. \) Now let us show, that for every \(i, k \in U, j, l \in V \quad \frac{\partial G_i}{\partial p_k}(p^*, q^*) = \frac{\partial H_j}{\partial q_l}(p^*, q^*) = 0. \) Indeed, for any small enough \(\Delta p_k \) the point \((\overline{p}^* + \Delta p_k \epsilon_k, \overline{q}^*)\) corresponds to Nash equilibrium of the game \(\Gamma' \) with the payoff functions \(A'(\overline{q}) = A(\overline{q}) \) and \(B'(\overline{p}) = B(\overline{p} - \Delta p_k \epsilon_k) \), which are extended in a proper way. Hence, by the condition 1), \(\overline{c}_i(\overline{p}^* + \epsilon_k \Delta p_k, A(\overline{q}^*)) = 0. \) Proof of the second equality is analogous.

Thus, the Jacobian at the point \((\overline{p}^*, \overline{q}^*)\) takes the following block form:

\[
J = \begin{bmatrix}
0 & \frac{\partial G_R}{\partial p_s} & \frac{\partial G_R}{\partial q_u} & \frac{\partial G_R}{\partial q_v} \\
\frac{\partial G_R}{\partial p_s} & 0 & \frac{\partial G_S}{\partial q_u} & \frac{\partial G_S}{\partial q_v} \\
\frac{\partial H_u}{\partial p_R} & \frac{\partial H_u}{\partial p_s} & 0 & \frac{\partial H_u}{\partial q_v} \\
0 & \frac{\partial H_v}{\partial p_s} & \frac{\partial H_v}{\partial q_v}
\end{bmatrix}
\]

The two blocks of 0's on the diagonal are \((r-1)*(r-1)\) and \((s-1)*(s-1)\) matrices. If \(r \neq s \), then \(\det J = 0 \), i.e. \((p^*, q^*)\) is a degenerate point. Otherwise the characteristic polynomial \(f(\lambda) \) of the matrix
\[
\tilde{J} = \begin{bmatrix}
0 & -\frac{\partial G_R}{\partial q_u} \\
-\frac{\partial H}{\partial u} & 0 \\
\frac{\partial H}{\partial p} & 0
\end{bmatrix}
\]

is even, and either all its eigenvalues are on the imaginary axes or for one of them \(\text{Re} \lambda > 0\).

Now let us consider the latter case and prove the second part of the theorem. We denote \(x = \tilde{p} - p^*, \quad y = \tilde{q} - q^*, \quad W = (x, y), \quad \pi = (\tilde{p}, \tilde{q})\) and expand the functions \(c, \tilde{a}, G, H\) in variable \(W\):

\[
c(t, p, q) = c(t, p^*, q^*) + \tilde{h}_1(t, W) \|W\|,
\]

\[
\tilde{a}(t, p, q) = \tilde{a}(t, p^*, q^*) + \tilde{h}_2(t, W) \|W\|,
\]

\[
G(q, A(q)) = (\partial G/\partial W)(p^*, q^*)W + \tilde{h}_3(W),
\]

\[
H(q, B(q)) = (\partial H/\partial W)(p^*, q^*)W + \tilde{h}_4(W),
\]

where the functions \(\tilde{h}_1(t, W), \tilde{h}_2(t, W), \tilde{h}_3(W), \tilde{h}_4(W)\) are bounded uniformly by \(t, W, \tilde{h}_l(W)/\|W\| \to 0\) as \(\|W\| \to 0\), \(l = 3, 4\). By the time change \(d\tau = c(t, p^*, q^*)dt\) the system (2) is transposed to the form

\[
\dot{x} = (\partial G/\partial W)(p^*, q^*)W + g_{11}(t, W) + g_{12}(t, W(0), W);
\]

\[
\dot{y} = \alpha(\tau)(\partial H/\partial W)(p^*, q^*)W + g_{21}(t, W) + g_{22}(t, W(0), W);
\]
where \(\alpha(t) = \frac{d(t)}{c(t, q^*, p^*)} \), \(\varepsilon / \bar{\varepsilon} \leq \alpha(t) \leq \bar{\varepsilon} / \varepsilon \), and the functions \(\varepsilon_{1}, \varepsilon_{2} \) satisfy the conditions of Lemma 2, \(l = 1,2 \). By the assumption the system \(d(x, y, d/\bar{t} = J (x, y, y) \) has a solution \(\bar{x}, \bar{y} \exp(\lambda t) \), \(\lambda > 0 \). By Lemma 1 the linearised system

\[
\ddot{x} = \left(\frac{\partial \bar{G}}{\partial \bar{W}} \right) (p^*, q^*) \bar{W},
\]

\[
\ddot{y} = \alpha(t) \left(\frac{\partial \bar{H}}{\partial \bar{W}} \right) (p^*, q^*) \bar{W}
\]

has such solution \((\tilde{x}(t), \tilde{y}(t)) \) that satisfies

\[
\|\tilde{x}(t)\| \geq \exp(\lambda (\varepsilon / \bar{\varepsilon})^{1/2} t) \|\tilde{x}(0)\|.
\]

Hence, by Lemma 2 the point 0 is unstable for the system (7) as is the point \((p^*, q^*) \) for the initial system (2).

5. DISCUSSION

Schuster et al. (1981) have shown that non-trivial mixed equilibria of pair contests are never linearly asymptotically stable points of the replicator dynamics. The theorem of section 4 establishes the analogous result for arbitrary interaction between two populations for the wide class of autonomous \(\varepsilon \)-coordinated evolutionary systems. The theorem also shows that for any non-autonomous \(\varepsilon \)-coordinated system the investigation of the corresponding linearized autonomous system allows us to determine the saddle points which are unstable for the initial system. As for the points of center-type, Schuster et al. have put forward the conjecture: while these points are stable, they are not asymptotically so for the replicator dynamics. This has been
proven for some classes of bimatrix games. This proposition fails in some other autonomous \(\theta \)-coordinated systems (see Hofbauer and Sigmund, 1988), as well as in the non-autonomous replicator dynamics (see Vasin, 1989). But even if a point of center-type is asymptotically stable, the rate of convergence to this point is low. For natural systems, the fluctuation around the point is to be expected in this case.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>"Models of Collective Behavior Dynamics" A.A. Vasin. Moscow University Press, Moscow, 1989</td>
</tr>
</tbody>
</table>
PUBLISHED ISSUES

WP-AD 90-01 "Vector Mappings with Diagonal Images"

WP-AD 90-02 "Lagrangian Conditions for General Optimization Problems with Applications to Consumer Problems"

WP-AD 90-03 "Doubly Implementing the Ratio Correspondence with a 'Natural' Mechanism"

WP-AD 90-04 "Monopoly Experimentation"

WP-AD 90-05 "Monopolistic Competition: Equilibrium and Optimality"

WP-AD 91-01 "A Characterization of Acyclic Preferences on Countable Sets"

WP-AD 91-02 "First-Best, Second-Best and Principal-Agent Problems"

WP-AD 91-03 "Market Equilibrium with Nonconvex Technologies"

WP-AD 91-04 "A Note on Tax Evasion"

WP-AD 91-05 "Oligopolistic Competition Among Groups"

WP-AD 91-06 "Mixed Pricing in Oligopoly with Consumer Switching Costs"

WP-AD 91-07 "Duopoly Experimentation: Cournot and Bertrand Competition"

WP-AD 91-08 "Competition and Culture in the Evolution of Economic Behavior: A Simple Example"

WP-AD 91-09 "Fixed Price and Quality Signals"

WP-AD 91-10 "Technological Change and Market Structure: An Evolutionary Approach"

WP-AD 91-11 "A 'Classical' General Equilibrium Model"

WP-AD 91-12 "Robust Implementation under Alternative Information Structures"
WP-AD 92-01 "Inspections in Models of Adverse Selection"

WP-AD 92-02 "A Note on the Equal-Loss Principle for Bargaining Problems"

WP-AD 92-03 "Numerical Representation of Partial Orderings"

WP-AD 92-04 "Differentiability of the Value Function in Stochastic Models"

WP-AD 92-05 "Individually Rational Equal Loss Principle for Bargaining Problems"

WP-AD 92-06 "On the Non-Cooperative Foundations of Cooperative Bargaining"

WP-AD 92-07 "Maximal Elements of Non Necessarily Acyclic Binary Relations"

WP-AD 92-08 "Non-Bayesian Learning Under Imprecise Perceptions"

WP-AD 92-09 "Distribution of Income and Aggregation of Demand"

WP-AD 92-10 "Multilevel Evolution in Games"

WP-AD 93-01 "introspection and Equilibrium Selection in 2x2 Matrix Games"

WP-AD 93-02 "Credible Implementation"

WP-AD 93-03 "A Characterization of the Extended Claim-Egalitarian Solution"

WP-AD 93-04 "Industrial Dynamics, Path-Dependence and Technological Change"

WP-AD 93-05 "Shaping Long-Run Expectations in Problems of Coordination"

WP-AD 93-06 "On the Generic Impossibility of Truthful Behavior: A Simple Approach"

WP-AD 93-07 "Cournot Oligopoly with 'Almost' Identical Convex Costs"

WP-AD 93-08 "Comparative Statics for Market Games: The Strong Concavity Case"

WP-AD 93-09 "Numerical Representation of Acyclic Preferences"
B. Subiza. October 1993.
WP-AD 93-10 "Dual Approaches to Utility"
M. Browning. October 1993.

WP-AD 93-11 "On the Evolution of Cooperation in General Games of Common Interest"

WP-AD 93-12 "Divisionalization in Markets with Heterogeneous Goods"

WP-AD 93-13 "Endogenous Reference Points and the Adjusted Proportional Solution for Bargaining Problems with Claims"

WP-AD 94-01 "Equal Split Guarantee Solution in Economies with Indivisible Goods Consistency and Population Monotonicity"

WP-AD 94-02 "Expectations, Drift and Volatility in Evolutionary Games"

WP-AD 94-03 "Expectations, Institutions and Growth"

WP-AD 94-04 "A Demand Function for Pseudotransitive Preferences"

WP-AD 94-05 "Fair Allocation in a General Model with Indivisible Goods"

WP-AD 94-06 "Honesty Versus Progressiveness in Income Tax Enforcement Problems"

WP-AD 94-07 "Existence and Efficiency of Equilibrium in Economies with Increasing Returns to Scale: An Exposition"

WP-AD 94-08 "Stability of Mixed Equilibria in Interactions Between Two Populations"