EXISTENCE OF MAXIMAL ELEMENTS IN A BINARY RELATION
RELAXING THE CONVEXITY CONDITION

Juan-Vicente Linares**

WP-AD 95-10

---

* I would like to express my gratitude to C. Herrero, J.E. Martínez Legaz, J.E. Peris, M.C. Sánchez and B. Subiza for their helpful comments. Any remaining errors are my exclusive responsibility. Financial support from DGICYT under project PS 90-0156 and Instituto de Cultura Juan Gil-Albert is also acknowledged.

** University of Alicante.
EXISTENCE OF MAXIMAL ELEMENTS IN A BINARY RELATION
RELAXING THE CONVEXITY CONDITION

Juan-Vicente LLinares

ABSTRACT

In this paper we relax the convexity condition in some classical results on the existence of maximal elements in binary relations in order to generalize them. To do this, we replace the linear segments in the usual convexity with a family of previously fixed paths joining up each two points. From these paths, we introduce a family of sets which generalizes the usual convex sets, and in this context we extend Sonnenschein's theorem on the existence of maximal elements and Browder's theorem on the existence of continuous selection and fixed point to correspondences.

KEYWORDS: Maximal elements, Fixed points, non-Convexity.
0. INTRODUCTION.

When an agent is faced with the problem of choosing a bundle of products, in the end, he will look for the bundle which maximizes his preference relation from those which he can afford. If we consider that preference relations can be represented by continuous utility functions, then the existence of maximal elements on compact subsets is ensured (by applying Weierstrass' theorem). Considering utility functions is very restrictive, mainly because transitivity of the indifference is an assumption much criticized as being strongly unrealistic (see Luce (1956), Starr (1969), etc). It is for this reason that the problem of the existence of maximal elements in non transitive binary relations is a very interesting one.

There are two different and independent approaches to be used in showing nonemptyness of the set of maximal elements without assuming transitivity of preferences. On the one hand acyclicity conditions instead of transitivity ones are considered (Bergstrom, 1975; Walker, 1977, see Border, 1985) and on the other, binary relations which verify some convexity conditions on the contour sets are used. In this line there are some known results, such as those of Fan's Lemma (see Border (1985)), Sonnenschein (1971), Yannelis and Prabhakar (1983).

Although convexity assumption can sometimes be justified as a "natural" requirement, many authors have criticized this assumption from both the experimental and formal point of view. Starr (1969) criticizes the
requirement of convex preferences since "it postulates away all forms of indivisibility and a class of relations which one might call anticomplementarity (those in which there are two different goods and the simultaneous use of both of them yields less satisfaction to the consumer than would the use of one of them)."

In this paper we present a new point of view in order to weaken the notion of convexity. In particular, we introduce a generalized convexity structure called $K$-convex continuous structure which is based on the idea of replacing the linear segments which appear in the usual convexity with a family of previously fixed paths. From these paths we define a family of sets (called $K$-convex sets) which generalizes the notion of usual convex sets (in a natural way, a subset $A$ will be $K$-convex if the path joining up each two points in $A$ is contained in $A$), and in this framework we obtain the results. Furthermore, in this case neither a vectorial structure nor a finite dimension on the spaces are necessary. So our results will cover situations without convexity and/or with non finite dimensionality.

The paper is organized as follows, in Section I we introduce the $K$-convex continuous structure. By using this structure, in Section II we present a result on the existence of maximal elements in binary relations which generalizes Sonnenschein's Theorem. To obtain this generalization we use a Lemma which extends Browder's selection and fixed point Theorem to the context of $K$-convex spaces. We finish this Section by showing an example in which our results can be applied (and Sonnenschein's and other aforementioned results can not). The proofs are presented in a final appendix.
I. K-CONVEX SPACES.

Definition 1.1. Let $X$ be a topological space; a $K$-convex continuous structure on $X$ is defined by a continuous function

$$K : X \times X \times [0,1] \to X$$

such that

$$K(x,y,0) = x \quad \text{and} \quad K(x,y,1) = y \quad \forall x,y \in X.$$ 

Under these conditions, we call the pair $(X, K)$ a $K$-convex space.

Remark. Note that for any pair of points $x$, $y$ in a $K$-convex space $X$, we can define the function, $K_{xy} : [0,1] \to X; \quad K_{xy}(t) = K(x,y,t)$ such that $K_{xy}$ is continuous and $K_{xy}(0) = x$, $K_{xy}(1) = y$. So function $K_{xy}$ can be interpreted as a continuous path joining $x$ and $y$. Furthermore, it is verified that if we consider points which are close together ($x'$ close to $x$, $y'$ close to $y$), then the path which joins $x$ and $y$ and the path which joins $x'$ and $y'$ are also close together.

In a $K$-convex space, we can consider a family of subsets of $X$ which represents the generalization of convex sets, which are exactly those which are stable under function $K$.

Definition 1.2. We say that a non-empty subset $A$ of a $K$-convex space $X$, is a $K$-convex set if

$$\forall x,y \in A \quad K(x,y,[0,1]) \subseteq A.$$
This means that, for any pair of points in A, the path which joins them up, K(x,y,[0,1]), is contained in A. Moreover, it is not difficult to prove that the arbitrary intersection of K-convex sets is also a K-convex set, which in turn makes it possible to define the extension of the notion of convex hull.

**Definition 1.3.** For any subset A of a K-convex space X, we will give the name *K-convex hull* of A, to the K-convex set given by:

\[ C_k(A) = \cap \{ B : A \subseteq B, B \text{ K-convex set} \}. \]

It is obvious that in a convex set X it is always possible to define a K-convex continuous structure by using the function

\[ K(x,y,t) = (1-t)x + ty. \]

In this case the K-convex sets coincide with the convex subsets of X, and the K-convex hull of any subset \( A \subset X \) is the usual convex hull.

Another example whereby a K-convex continuous structure can be defined in a natural way is given by *star-shaped sets*; a subset \( X \) of a linear space is called a *star-shaped set* if there is some \( \alpha \in X \) (the center of the star) such that

\[ tx + (1-t)\alpha \in X \quad \forall x \in X, \forall t \in [0,1] \]

In this case, function \( K \) can be defined by

\[ K(x,y,t) = \begin{cases} (1-2t)x + 2t\alpha & t \in [0, 0'5] \\ (2-2t)\alpha + (2t-1)y & t \in [0'5, 1] \end{cases} \]
A necessary condition for a set $A$ to be a $K$-convex set is that it contain the center of the star.

Another example is given by the sets which are homeomorphic to a convex set; if $h: X \rightarrow C$ is the homeomorphism, then we can define

$$K(x, y, t) = h^{-1}\left((1-t)h(x) + th(y)\right).$$

In this case a subset $B$ is a $K$-convex set if and only if $h(B)$ is a convex subset of $C$.

The next proposition states the conditions which have to be required in order that it be possible for a $K$-convex continuous structure to be defined on a set $X$. For this, we will need the notion of contractible set, which is defined as follows:

**Definition 1.4.** A topological space $X$ is *contractible* if there is a point $x^*$ in $X$ and a continuous function $H:X \times [0,1] \rightarrow X$ such that for each $x$ in $X$ it is verified $H(x,1) = x^*$ and $H(x,0) = x$.

**Proposition 1.1.** Let $X$ be a subset of a topological space, then it is possible to define a $K$-convex continuous structure on $X$ if and only if $X$ is a contractible set.

*(Proof in the appendix).*

It is important to note that although the contractibility condition and the condition of having a $K$-convex continuous structure are equivalent, this
does not mean that the K-convex subsets of X coincide with the contractible subsets. This is due to the fact that the family of contractible sets is not stable under arbitrary intersections, while the family of K-convex sets verifies this property. Hence the family of K-convex sets defined by function K is given by some of the contractible subsets of X (since it is true that any K-convex set is contractible). For instance, in the example of star-shaped sets, the K-convex sets coincide with the contractible ones containing the center of the star.

II. EXISTENCE OF MAXIMAL ELEMENTS.

In this section we are going to present a generalization of Sonnenschein's Theorem when convexity is dropped, and K-convexity, (which is a weaker condition) is assumed.

From a binary relation P defined on X, the upper and lower contour sets of an element \( x \in X \) are defined as usual:

\[
U(x) = \{ y \in X : y \mathcal{P} x \}
\]

\[
U^{-1}(x) = \{ y \in X : x \mathcal{P} y \}.
\]

An element \( x^* \in X \) is maximal for a binary relation \( \mathcal{P} \) if there is no other element which is preferred to it, that is, if \( U(x^*) = \emptyset \).
To prove the extension of Sonnenschein's theorem, we will make use of the following Lemma which is the generalization of Browder's Theorem on the existence of a continuous selection and a fixed point to correspondences with open inverse images in the context of K-convex spaces.

**Lemma II.1.** Let $X$ be a compact Hausdorff topological space with a K-convex continuous structure and let $U : X \rightarrow X$ be a nonempty valued correspondence such that,

$$\text{if } y \in U^{-1}(x), \exists x' \in X \text{ with } y \in \text{int}U^{-1}(x').$$

Then there exists a continuous function $f:X \rightarrow X$ which verifies:

1. $\exists x^* \in X$ such that $x^* = f(x^*)$.
2. $f(x) \in C_k(U(x)) \ \forall x \in X$.

(*Proof in the appendix*).

The next result is the extension of Sonnenschein's Theorem (1971) as well as Yannnelis and Prabhakar's result (1983) on the existence of maximal elements in the context of K-convex spaces.

**Theorem II.2.** Let $X$ be a compact Hausdorff topological space with a K-convex continuous structure. Let $P$ be a binary relation on $X$ satisfying:

1. $x \not\in C_k(U(x))$ for all $x \in X$.
2. If $y \in U^{-1}(x), \exists x' \in X \text{ with } y \in \text{int}U^{-1}(x').$

Then the set of maximal elements $(x^* : U(x^*) = \emptyset)$ is nonempty and compact.
Proof. 

If $U(x) \neq \emptyset \ \forall \ x \in X$, then from Lemma II.1, we deduce that there exists a continuous function $f$ with a fixed point, which verifies $f(x) \in C_k(U(x))$; in particular, $x^* = f(x^*) \in C_k(U(x^*))$ which is a contradiction with I. Therefore, the set of maximals is nonempty.

We can prove that the set $\{x^* : U(x^*) = \emptyset\}$ is closed, by seeing that its complement is open. If $w \notin \{x^* : U(x^*) = \emptyset\}$ then $U(w) \neq \emptyset$. Let $y \in U(w)$; therefore $w \in U^{-1}(y)$ and by hypothesis there is some $y' \in X$ such that

$$w \in \text{int} U^{-1}(y')$$

so $\text{int} U^{-1}(y')$ is an open set which contains $w$. To prove that it is contained in $X/\{x^* : U(x^*) = \emptyset\}$, let $z \in \text{int} U^{-1}(y')$; then $y' \in U(z)$ and $U(z) \neq \emptyset$.

Consequently it is obtained that the set of maximals is closed and therefore compact.

Notice that in the previous Theorem, we did not impose any condition on the dimensionality or linearity of the reference space. So, as a consequence of this result we obtain:

Corollary II.3. [Sonnenschein, 1971]. Let $X$ be a compact convex subset of $\mathbb{R}^n$ and let $P$ be a binary relation defined on $X$, such that:

1. $\forall x \in X \quad x \notin C(U(x))$.

2. If $y \in U^{-1}(x)$, $\exists \ x' \in X$ with $y \in \text{int} U^{-1}(x')$. 

12
Then the set of maximal elements \( \{x^* : U(x^*) = \emptyset\} \) is nonempty and compact.

And in the context of infinite dimensional spaces,

**Corollary II.4.** [Yannelis and Prabhakar, 1983]. Let \( X \) be a compact convex subset of a linear topological space and let \( U : X \rightarrow X \) be a correspondence which verifies:

1. \( \forall x \in X \quad x \notin C(U(x)) \).
2. \( \forall x \in X \quad U^{-1}(x) \) is an open set in \( X \).

Then the set of maximal elements \( \{x^* : U(x^*) = \emptyset\} \) is nonempty.

Furthermore, as a consequence of Lemma II.1, we obtain the generalization of Fan (1961), and Browder's (1968) Theorems on the existence of continuous selection and fixed point to convex valued correspondences.

**Theorem II.5.** Let \( X \) be a compact Hausdorff topological space with a \( K \)-convex continuous structure and let \( U : X \rightarrow X \) be a correspondence with nonempty \( K \)-convex values such that,

\[
\text{if } y \in U^{-1}(x), \exists \ x' \in X \ \text{with} \ y \in \text{int}U^{-1}(x').
\]

Then \( U \) has a continuous selection \( f : X \rightarrow X \), and a fixed point:

\[
f(x) \in U(x) \quad \forall \ x \in X \quad \text{and} \quad \exists \ x^* \in X : x^* \in U(x^*).
\]
Proof.

By applying Lemma II.1, there exists a continuous function $f$ such that $f(x) \in C_k(U(x))$ $\forall x \in X$, and $x^* \in X$ exists such that $x^* = f(x^*)$. As $U$ has $K$-convex values, then $C_k(U(x)) = U(x)$ $\forall x \in X$, which completes the proof.

\[ \blacksquare \]

From the previous Theorem, the following is immediately obtained

**Corollary II.6.** [Browder, 1968]. Let $C$ be a nonempty compact convex subset of a topological vector space. Let $\Gamma:C\rightarrow C$ be a nonempty convex valued correspondence with open inverse images. Then $\Gamma$ has a continuous selection and a fixed point.

To finish we will show an example where Sonnenschein (1971) or Yannelis and Prabhakar's (1983) results of existence of maximal elements cannot be applied and in which the existence of maximal elements can be obtained by applying Theorem II.2.

**Example.** Let $X$ be the following subset of $\mathbb{R}^2$,

$$X = \{ (x,y) \in \mathbb{R}^2; \| (x,y) \| \leq 1, \ y \geq 0 \}$$

and consider the $K$-convex continuous structure defined by

$$K:X \times X \times [0,1] \rightarrow X$$

$$K(x,y,t) = (1-t)\rho_x + t\rho_y e^{i(1-t)\alpha_x t \alpha_y}$$

14
where \( x = \rho x e^{i\alpha x} \), \( y = \rho y e^{i\alpha y} \) is the complex representation of the elements in the plane.

\[
K(x,y,t)
\]

GRAPHIC 1.

Let us consider now the following subsets of \( X \):

\[
A = \{ (x,y) \in \mathbb{R}^2: \| (x,y) \| = 1, \ x < 0, \ y > 0 \}.
\]

\[
B = \{ (x,y) \in \mathbb{R}^2: \| (x,y) \| = 1, \ x \geq 0, \ y \geq 0 \}.
\]

The preference relation \( P \) is defined on \( X \) as follows:

\[
\forall b \in B, \forall x \in X \setminus B \quad b \ P x
\]

\[
\forall a \in A, \ x \in X \setminus A \cup B \cup \{y^*\} \quad a \ P x
\]

\[
x^* = (-1/2, 0), \ y^* = (-1, 0) \quad x^* \ P y^*
\]

\[
\forall x, y \in X \setminus A \cup B \cup \{x^*, y^*\} \quad x \ P y \iff \|x\| > \|y\|
\]
In order to see that condition 1 of Theorem II.2 is verified, note that if \( x \) is different from \( x^* \) and \( y^* \), it is obviously fulfilled from the definition of the preference relation \( P \). Since \( U(x^*) \) is a \( K \)-convex set, \( x^* \notin C_K(U(x^*)) = U(x^*) \). And, \( y^* \notin C_K(U(y^*)) \), because \( U(y^*) = B \cup \{x^*\} \) and the \( K \)-convex hull of this set does not contain the point \( y^* \).

Finally it is not difficult to see that condition 2 is also verified and it can be concluded, from Theorem II.2 that a maximal element exists.

Note that this is in fact a non acyclic binary relation, and as such results for acyclic binary relations can not be applied.
APPENDIX.

Proof Proposition I.1.

Let $K$ be the function which defines the $K$-convex continuous structure. For any fixed $a \in X$, the following function can be considered,

\[ H : X \times [0, 1] \rightarrow X ; \quad H(x, t) = K(x, a, t) \]

It is a continuous function since $K$ is continuous and furthermore it verifies that $H(x, 0) = x$, $H(x, 1) = a$, so $X$ is a contractible set.

Conversely, if $X$ is a contractible set then there exists a continuous function $H$ which satisfies the previous assumptions, and from which it is possible to define the following function $K$,

\[ K(x, y, t) = \begin{cases} H(x, 2t) & t \in [0, 0.5] \\ H(y, 2-2t) & t \in [0.5, 1] \end{cases} \]

which defines a $K$-convex continuous structure on $X$.

\[ \blacksquare \]

Proof of Lemma II.1.

As $U(x) \neq \emptyset$, for each $x \in X$, then there is $y \in U(x)$, so $x \in U^{-1}(y)$. Thus, \( \{U^{-1}(y) : y \in X\} \) covers $X$ and from hypothesis we obtain that \( \{\text{int}U^{-1}(y) : y \in X\} \) is an open cover of $X$. Since $X$ is a compact set, then
there is a finite subcover \( \{ \text{int } U^{-1}(y_i) : i=0, \ldots, n \} \) and a continuous finite partition of unity subordinate to this subcovering,

\[
\{\psi_i\}_{i=0}^n \geq 0, \quad \sum \psi_i(x) = 1, \quad \psi_i(x) > 0 \Rightarrow x \in \text{int} U^{-1}(y_i)
\]

If we define \( J(x) = \{ i : \psi_i(x) > 0 \} \), then \( y_i \in U(x) \; \forall \; i \in J(x) \) and

\[
C_k((y_i: i \in J(x))) \subseteq C_k(U(x))
\]

As \( C_k((y_i: i \in J(x))) \) is a K-convex set, we can ensure that for every \( y_i, i \in J(x) \) and any point \( p \) in \( C_k((y_i: i \in J(x))) \), the path which joins them up will be contained in \( C_k((y_i: i \in J(x))) \). So, from these arcs, the selection of the correspondence is obtained by composing them.

\[\text{a. Construction of the continuous selection } f.\]

From the finite partition of unity, we define the following family of functions,

\[
t_i(x) = \begin{cases} 
0 & \text{if } \psi_i(x) = 0 \\
\frac{\psi_i(x)}{\sum_{j=1}^{n} \psi_j(x)} & \text{if } \psi_i(x) \neq 0 
\end{cases}
\]
If we call $h_{n-1} = y_n$, then both $h_{n-1}$ and $y_{n-1}$ belong to $U(x)$ (whenever $\psi(x) > 0$, $\psi_{n-1}(x) > 0$); therefore the path $K(h_{n-1}, y_{n-1}, [0,1])$ joining these points (which we call $g_{n-1}$) is contained in $C_1(y : i \in J(x))$ since it is a $K$-convex set. By computing $g_{n-1}$ at $t_{n-1}(x)$, we obtain the point

$$h_{n-2} = g_{n-1}(t_{n-1}(x)) = K(h_{n-1}, y_{n-1}, t_{n-1}(x))$$

and by construction $h_{n-2} \in C_1(y : i \in J(x))$. By repeating the argument with the path which joins $h_{n-2}$ and $y_{n-2}$ (which we will call $g_{n-2}$) and computing it in $t_{n-2}(x)$, we obtain,

$$h_{n-3} = g_{n-2}(t_{n-2}(x)) = K(h_{n-2}, y_{n-2}, t_{n-2}(x)).$$

We repeat this reasoning until we obtain the element $h_0$ which will be linked to $y_0$ by means of the path $g_0$. Finally we define

$$f(x) = g_0(\psi_0(x)) = K(h_0, y_0, t_0(x))$$

that is,

$$f(x) = K\left[\ldots, K(K(y_n, y_{n-1}, t_{n-1}(x)), y_{n-2}, t_{n-2}(x)), y_{n-3}, t_{n-3}(x)\right]...$$
As a result of the way in which $f$ is defined, it is immediate that $f(x) \in C_{k}((y_{i} : i \in J(x)))$, $\forall x \in X$, since the "relevant" paths are contained in $C_{k}((y_{i} : i \in J(x)))$ [notice that if $\psi_{i}(x) = 0$ for some $i$, then we have that $t_{i}(x) = 0$, so

$$K(h_{i}, y_{i}, t_{i}(x)) = K(h_{i}, y_{i}, 0) = h_{i}$$

and $y_{i}$ will not appear in the construction of function $f$; hence to construct selection $f$ we only use the points $y_{i}$ such that $i \in J(x)]$.

b. Continuity of selection $f$.

Selection $f$ can be rewritten as the following composition

$$f(x) = K(\mathcal{F}(\Psi(x)))$$

where $K : [0,1]^{n} \rightarrow X$ is defined by

$$\tilde{K}(t_{0}, \ldots, t_{n-1}) = K\left(\ldots, K\left(y_{n}, y_{n-1}, t_{n-1}\right), y_{n-2}, t_{n-2}\right) \ldots, y_{0}, t_{0}\right)$$

$$\Psi : X \rightarrow \Delta_{n}$$

$$\Psi(x) = (\psi_{0}(x), \psi_{1}(x), \ldots, \psi_{n}(x))$$

and

$$\mathcal{F} : \Delta_{n} \rightarrow \mathbb{R}^{n}$$

$$\mathcal{F}(z) = \begin{cases} 0 & \text{if } z_{i} = 0 \\ \frac{z_{i}}{\sum_{j=1}^{n} z_{j}} & \text{if } z_{i} \neq 0 \end{cases}$$

$i = 0, \ldots, n-1$
In order to prove the continuity of $f$ at any point $x$, we shall first prove that $\tilde{K} \circ \tilde{I} : \Delta_n \rightarrow X$ is a continuous function. If this is true then the continuity of $f$ will be obtained immediately (since $f$ is a composition of continuous functions, $\tilde{K} \circ \tilde{I}$ and $\Psi$).

To analyze the continuity of function $\tilde{K} \circ \tilde{I}$ at any point $z \in \Delta_n$ it is important to note that if $z_i > 0$ then

$$\tilde{I}_i(z) = \frac{z_i}{\sum_{j=1}^{n} z_j} \quad i=0,1,\ldots,n-1$$

are continuous functions, since they are quotients of continuous functions whose denominators are not zero.

In the other case, $\tilde{I}_i(z)$ could not be continuous (when its denominator is zero, that is, when $z_i$ are zero for all $k = i, \ldots, n$).

In the first case, the continuity is immediate since $\tilde{K} \circ \tilde{I}$ is a composition of continuous functions and therefore continuous.

In the second case, if we define

$$j = \max \{ i : z_i > 0 \}$$

then $z_{j+1} = 0, \ldots, z_n = 0$, hence
\[ \mathcal{I}_{j+1}(z) = 0, \ldots, \mathcal{I}_{n-1}(z) = 0 \quad \text{and} \quad \mathcal{I}_j(z) = 1 \]

Furthermore \( \mathcal{I}_r \) \((r = 0, \ldots, j)\) are continuous functions at \( z \) because their denominators are not zero. As a result of the way in which function \( \tilde{K} \) has been defined, it is verified that

\[
\tilde{K}(\mathcal{I}_0(z), \ldots, \mathcal{I}_j(z), \ldots, \mathcal{I}_{n-1}(z)) = \tilde{K}(\mathcal{I}_0(z), \ldots, 1, 0, \ldots, 0) =
\]

\[
K\left[ K\left( K\left( y_{n-1}^r, y_{n-2}^r, \ldots, y_j^r, 1 \right), \ldots \right), y_0^r, \mathcal{I}_j(z) \right]
\]

and since \( K(a, b, l) = b, \ \forall \ a \in X, \) then

\[
K\left[ K\left( K\left( y_{n-1}^r, \mathcal{I}_{n-1}(z) \right), y_{n-2}^r, \mathcal{I}_{n-2}(z) \right), \ldots, y_j^r, 1 \right] = y_j
\]

and it is independent of the values of \( \mathcal{I}_{n-1}(z), \mathcal{I}_{n-2}(z), \ldots, \mathcal{I}_{j+1}(z); \) that is,

\[
K\left[ K\left( K\left( y_{n-1}^r, y_{n-2}^r, \ldots, y_j^r, 1 \right), \ldots \right), y_j^r \right] = y_j
\]

\[ \forall \ \lambda_{n-1}, \ldots, \lambda_{j+1} \in [0,1] \]

so, \( \forall \ \lambda_{n-1}, \ldots, \lambda_{j+1} \in [0,1] \)

\[
\tilde{K}(\mathcal{I}_0(z), \ldots, \mathcal{I}_j(z), \ldots, \mathcal{I}_{n-1}(z)) = \tilde{K}(\mathcal{I}_0(z), \ldots, 1, 0, \ldots, 0) =
\]

\[ = \tilde{K}(\mathcal{I}_0(z), \ldots, 1, \lambda_{j+1}, \ldots, \lambda_{n-1}) \]

23
In order to simplify the notation, we denote $T = (\mathcal{F}_0(z), \ldots, i)$ and $\lambda = (\lambda_{j+1}, \ldots, \lambda_{n-1})$; thus $\tilde{K}(\mathcal{F}_0(z), \ldots, 1, \lambda_{j+1}, \ldots, \lambda_{n-1}) = \tilde{K}(T, \lambda)$ $\forall \lambda \in [0,1]^m$ $(m = n - j - 1)$.

In order to obtain that function $\tilde{K} \circ \mathcal{F}$ is continuous, we will prove that\(^{(1)}\)

$$\forall z \in A_n', \forall W \in N(\tilde{K} \circ \mathcal{F}(z)) \ , \exists V' \in N(z) \text{ such that } \tilde{K} \circ \mathcal{F}(V') \subseteq W$$

By applying that $\tilde{K} \circ \mathcal{F}(z) = \tilde{K}(T, \lambda)$ $\forall \lambda \in [0,1]^m$ and that $\tilde{K}$ is a continuous function, we have that

$$\forall W \in N(\tilde{K}(T, \lambda)), \exists V^\lambda_T \times V^\lambda_A \in N((T, \lambda)): \tilde{K}(V^\lambda_T \times V^\lambda_A) \subseteq W \quad [1]$$

Moreover, since the family of open neighborhoods $V^\lambda_A$ when $\lambda \in [0,1]^m$ is a covering of $[0,1]^m$, which is a compact subset, we know that there exists a finite subcovering

$$[0,1]^m = \cup \{V^\lambda_{A_i} : i = 1, \ldots, p\}$$

Hence, if we take $V^\lambda_{A_i}$ $\forall i = 1, \ldots, p$, and we consider

$$V_T = \cap \{V^\lambda_{A_i} : \forall i = 1, \ldots, p\},$$

\(^{(1)}\) $N(A)$ denotes the family of neighborhoods of $A$.  

24
then $V_T$ is a neighborhood of $T = (\mathcal{F}_0(z), \ldots, \mathcal{F}_{j-1}(z), 1)$ and we can rewrite

$$V_{T_i}^\lambda = V_{T_0}^\lambda \times \ldots \times V_{T_j}^\lambda \quad \text{where} \quad V_{T_k}^\lambda \in N(\mathcal{F}_k(z)),$$

hence $V_T = V_{T_0} \times \ldots \times V_{T_j}$ where $V_{T_k} = \cap \{ V_{T_k}^\lambda : i=1,\ldots,p \} \quad k = 0, \ldots, j.$

As $V_{T_k}$ is a neighborhood of $\mathcal{F}_k(z)$, since it has been defined as a finite intersection of neighborhoods of $\mathcal{F}_k(z)$, and functions $\mathcal{F}_k$ are continuous at $z$, $\forall k = 0, \ldots, j$, there are neighborhoods $U_k$ of $z$ such that $\mathcal{F}_k(U_k) \subset V_{T_k}$.

Finally, if we denote

$$V' = \cap \{ U_k : k = 0, \ldots, j \}$$

then $V'$ is a neighborhood of $z$, and it is verified that

$$\forall w \in V', (\mathcal{F}_0(w), \ldots, \mathcal{F}_j(w)) \in V_{T_0} \times \ldots \times V_{T_j} = V_T \subset V_T^\lambda \quad \forall i=1,\ldots,p$$

For the rest of the indexes $(k=j+1,\ldots,n)$ it is verified that

$$(\mathcal{F}_{j+1}(w), \ldots, \mathcal{F}_{n-1}(w)) \in [0,1]^m = \cup \{ V_{\lambda_i}^\lambda : i=1,\ldots,p \},$$

so there is an index $i_0$ such that

$$(\mathcal{F}_{j+1}(w), \ldots, \mathcal{F}_{n-1}(w)) \in V_{\lambda_{i_0}}^\lambda, \quad i_0 \in \{1,\ldots,p\}$$
Thus we can ensure that

\[(\mathcal{F}(w), \ldots, \mathcal{F}(w), \mathcal{J}_{j+1}(w), \ldots, \mathcal{J}_{n-1}(w)) \in V_{\lambda_{10}} \times V_{\lambda_{10}} \subset V_{\lambda_{10}} \times V_{\lambda_{10}} \]

and from [1], we can conclude that for any \( w \in V' \)

\[\tilde{K}(\mathcal{F}(w), \ldots, \mathcal{F}(w), \mathcal{J}_{j+1}(w), \ldots, \mathcal{J}_{n-1}(w)) \subset W\]

so function \( f \) is continuous.

c. Fixed point existence.

Consider now the function \( g = \psi \circ \tilde{K} \circ \mathcal{J}: \Delta_n \rightarrow \Delta_n \). Since \( \psi \) and \( \tilde{K} \circ \mathcal{J} \) are continuous, it is a continuous function from a convex compact set into itself; so Brouwer's Theorem can be applied and we have

\[\exists x_o \in \Delta_n : g(x_o) = x_o\]

Therefore, \( \tilde{K} \circ \mathcal{J}(g(x_o)) = \tilde{K} \circ \mathcal{J}(x_o) \) and, if we call \( x^* = \tilde{K} \circ \mathcal{J}(x_o) \), we obtain that \( \tilde{K} \circ \mathcal{J}(\psi \circ \tilde{K} \circ \mathcal{J})(x_o) = \tilde{K} \circ \mathcal{J}(x_o) \)

\[ f(x^*) = x^* , \]

that is, \( f \) has a fixed point which is also a fixed point to the correspondence.

\[ \blacksquare \]
REFERENCES

K.C. Border, Fixed point theorems with applications to economics and game theory (Cambridge University press, 1985).


PUBLISHED ISSUES

WP-AD 91-01  "A Characterization of Acyclic Preferences on Countable Sets"

WP-AD 91-02  "First-Best, Second-Best and Principal-Agent Problems"

WP-AD 91-03  "Market Equilibrium with Nonconvex Technologies"

WP-AD 91-04  "A Note on Tax Evasion"

WP-AD 91-05  "Oligopolistic Competition Among Groups"

WP-AD 91-06  "Mixed Pricing in Oligopoly with Consumer Switching Costs"

WP-AD 91-07  "Duopoly Experimentation: Cournot and Bertrand Competition"

WP-AD 91-08  "Competition and Culture in the Evolution of Economic Behavior: A Simple Example"

WP-AD 91-09  "Fixed Price and Quality Signals"

WP-AD 91-10  "Technological Change and Market Structure: An Evolutionary Approach"

WP-AD 91-11  "A 'Classical' General Equilibrium Model"

WP-AD 91-12  "Robust Implementation under Alternative Information Structures"

WP-AD 92-01  "Inspections in Models of Adverse Selection"

WP-AD 92-02  "A Note on the Equal-Loss Principle for Bargaining Problems"

WP-AD 92-03  "Numerical Representation of Partial Orderings"

WP-AD 92-04  "Differentiability of the Value Function in Stochastic Models"

* Please contact IVIE’s Publications Department to obtain a list of publications previous to 1991.
WP-AD 92-05  "Individually Rational Equal Loss Principle for Bargaining Problems"

WP-AD 92-06  "On the Non-Cooperative Foundations of Cooperative Bargaining"

WP-AD 92-07  "Maximal Elements of Non Necessarily Acyclic Binary Relations"

WP-AD 92-08  "Non-Bayesian Learning Under Imprecise Perceptions"

WP-AD 92-09  "Distribution of Income and Aggregation of Demand"

WP-AD 92-10  "Multilevel Evolution in Games"

WP-AD 93-01  "Introspection and Equilibrium Selection in 2x2 Matrix Games"

WP-AD 93-02  "Credible Implementation"

WP-AD 93-03  "A Characterization of the Extended Claim-Egalitarian Solution"

WP-AD 93-04  "Industrial Dynamics, Path-Dependence and Technological Change"

WP-AD 93-05  "Shaping Long-Run Expectations in Problems of Coordination"

WP-AD 93-06  "On the Generic Impossibility of Truthful Behavior: A Simple Approach"

WP-AD 93-07  "Cournot Oligopoly with 'Almost' Identical Convex Costs"

WP-AD 93-08  "Comparative Statics for Market Games: The Strong Concavity Case"

WP-AD 93-09  "Numerical Representation of Acyclic Preferences"
            B. Subiza. October 1993.

WP-AD 93-10  "Dual Approaches to Utility"
            M. Browning. October 1993.

WP-AD 93-11  "On the Evolution of Cooperation in General Games of Common Interest"

WP-AD 93-12  "Divisionalization in Markets with Heterogeneous Goods"
WP-AD 93-13  "Endogenous Reference Points and the Adjusted Proportional Solution for Bargaining Problems with Claims"

WP-AD 94-01  "Equal Split Guarantee Solution in Economies with Indivisible Goods Consistency and Population Monotonicity"

WP-AD 94-02  "Expectations, Drift and Volatility in Evolutionary Games"

WP-AD 94-03  "Expectations, Institutions and Growth"

WP-AD 94-04  "A Demand Function for Pseudotransitive Preferences"

WP-AD 94-05  "Fair Allocation in a General Model with Indivisible Goods"

WP-AD 94-06  "Honesty Versus Progressiveness in Income Tax Enforcement Problems"

WP-AD 94-07  "Existence and Efficiency of Equilibrium in Economies with Increasing Returns to Scale: An Exposition"

WP-AD 94-08  "Stability of Mixed Equilibria in Interactions Between Two Populations"

WP-AD 94-09  "Imperfectly Competitive Markets, Trade Unions and Inflation: Do Imperfectly Competitive Markets Transmit More Inflation Than Perfectly Competitive Ones? A Theoretical Appraisal"

WP-AD 94-10  "On the Competitive Effects of Divisionalization"

WP-AD 94-11  "Efficient Solutions for Bargaining Problems with Claims"

WP-AD 94-12  "Existence and Optimality of Social Equilibrium with Many Convex and Nonconvex Firms"

WP-AD 94-13  "Revealed Preference Axioms for Rational Choice on Nonfinite Sets"

WP-AD 94-14  "Market Learning and Price-Dispersion"

WP-AD 94-15  "Bargaining with Reference Points - Bargaining with Claims: Egalitarian Solutions Reexamined"

WP-AD 94-17 "Computers, Productivity and Market Structure"

WP-AD 94-18 "Fiscal Policy Restrictions in a Monetary System: The Case of Spain"

WP-AD 94-19 "Pareto Optimal Improvements for Sunspots: The Golden Rule as a Target for Stabilization"

WP-AD 95-01 "Cost Monotonic Mechanisms"

WP-AD 95-02 "Implementation of the Walrasian Correspondence by Market Games"

WP-AD 95-03 "Terms-of-Trade and the Current Account: A Two-Country/Two-Sector Growth Model"

WP-AD 95-04 "Exchange-Proofness or Divorce-Proofness? Stability in One-Sided Matching Markets"

WP-AD 95-05 "Implementation of Stable Solutions to Marriage Problems"

WP-AD 95-06 "Capabilities and Utilities"

WP-AD 95-07 "Rational Choice on Nonfinite Sets by Means of Expansion-Contraction Axioms"

WP-AD 95-08 "Veto in Fixed Agenda Social Choice Correspondences"

WP-AD 95-09 "Temporary Equilibrium Dynamics with Bayesian Learning"

WP-AD 95-10 "Existence of Maximal Elements in a Binary Relation Relaxing the Convexity Condition"

WP-AD 95-11 "Three Kinds of Utility Functions from the Measure Concept"

WP-AD 95-12 "Classical Equilibrium with Increasing Returns"

WP-AD 95-13 "Bargaining with Claims in Economic Environments"

WP-AD 95-14 "The Theory of Implementation when the Planner is a Player"

WP-AD 95-15 "Popular Support for Progressive Taxation"