A NOTE ON STABILITY OF BEST REPLY AND GRADIENT SYSTEMS WITH APPLICATIONS TO IMPERFECTLY COMPETITIVE MODELS

Luis C. Corchón and Andreu Mas-Colell

WP-AD 95-18
A NOTE ON STABILITY OF BEST REPLY AND GRADIENT SYSTEMS WITH APPLICATIONS TO IMPERFECTLY COMPETITIVE MODELS*

Luis C. Corchón and Andreu Mas-Colell**

WP-AD 95-18

* We thank to Rose-Anne Dana, Drew Fudenberg, Paco Marhuenda, Luigi Montrucchio and to audiences in Austin (Texas), Caltech and Duke-U. of North Carolina at Chapel Hill for comments and suggestions. The first author acknowledges financial support from Generalitat Valenciana, DGICYT under project PB91/0756 and the hospitality of the Royal Complutense College at Harvard.

** L.C. Corchón: University of Alicante and Instituto Valenciano de Investigaciones Economicas; A. Mas-Colell: Harvard University.
Editor: Instituto Valenciano de Investigaciones Económicas, S.A.
ISBN: 84-482-1074-3
Depósito Legal: V-2963-1995
Impreso por Copistería Sanchis, S.L., Quart, 121-bajo, 46008-Valencia.
Impreso en España.
A NOTE ON STABILITY OF BEST REPLY AND GRADIENT SYSTEMS
WITH APPLICATIONS TO IMPERFECTLY COMPETITIVE MODELS

Luis C. Corchón & Andreu Mas-Colell

ABSTRACT

In this paper we present a general result on the convergence to an equilibrium of a class of dynamic adjustment procedures—which includes Gradient Systems and Best Reply Dynamics as special cases—when there are two players and strategy sets are one dimensional. We also show that there are no restrictions on the form of Gradient or Best Reply dynamics, even under strong restrictions on the functional form of both demand and costs. This implies that we can construct examples with three players where the above dynamical procedures yield chaotic behavior.

Keywords: Stability; Chaotic Systems; Best Reply; Dynamics; Dominant Diagonal.
1. INTRODUCTION

The origins of the theory of dynamic stability in imperfectly competitive economies can be traced to Cournot (1838). He defined what in modern terms is called the Best Reply Dynamics and conjectured that, in the case of oligopoly with homogeneous goods, equilibrium would be reached asymptotically. The modern literature has pursued two different approaches to the study of best reply dynamics, respectively based on discrete time and on continuous time. Contributions in the former framework are found in Friedman (1977), Moulin (1982), Lippman, Mamer and McCardle (1987), Vives (1990) and Milgrom and Roberts (1990). Their results imply that under some, strong, assumptions best reply dynamics (and mild variations of it) converge asymptotically to some equilibrium. A fulfilled expectations variation of best reply dynamics, initially proposed by Maskin and Tirole (1987), has been studied by Dana and Montrucchio (1986, 1987) for the case of two players. They found that in general the possibility of chaotic behavior cannot be precluded. In the continuous time framework and assuming differential adjustments, Hahn (1962) and Okuguchi (1964) showed that with a homogeneous product, strategic substitution (i.e. the best reply function of any player is decreasing in the strategy of competitors) and an additional condition on the slopes of the inverse demand and marginal cost functions, the best reply dynamics converges asymptotically to the (unique) Cournot equilibrium. In a general equilibrium model, Negishi (1961) proved convergence of a related dynamic system (see also Hirsch and Smale, 1974 pp. 265-273, and Gaunersdorfer and Hofbauer, 1994). An advantage of the continuous over the discrete time approach is that the possible instabilities of the system are not linked to overshooting phenomena, a type of instability that is important but which may be better considered separately.

Our note attempts to answer the following question. What can be said about stability in continuous time that does not depend on special assumptions (beyond that strategy sets are one dimensional) about the underlying economy?. In fact we study this matter for Gradient Dynamics (see Arrow, Hurwicz and Uzawa, 1958) which, for the theory that concern us can be shown to include the results on best reply dynamics as a special case. We first tackle the case of
two players. By adapting an argument of Keenan and Rader (1985), based on Liouville’s theorem\(^{(1)}\), we are able to show that if the strategy space is one dimensional then convergence of a class of dynamic processes that includes gradient and best reply dynamics systems, obtains with considerable generality (Proposition 1). We then move to a deeper investigation into the properties of the functional form of gradient and best reply dynamics in oligopoly models. Our next result shows that this functional form is essentially arbitrary even under strong a-priori restrictions on the shape of demand and cost functions. Specifically, assuming that firms are price-setters we show that any list of n arbitrary functions can be rationalized as gradient dynamics of n firms with zero costs (or, in general, identical and constant marginal costs) and a system of demand functions with a negative Dominant Diagonal Jacobian (Proposition 2). An identical result can be proved for the case of best reply dynamics (Proposition 3). Similar results hold when firms are quantity-setters. Propositions 2 and 3 are reminiscent of the results obtained by Sonnenschein (1972), Mantel (1974), Debreu (1974) on the characterization of excess demand functions in the perfectly competitive case (or of Boldrin and Montrucchio, 1986, for equilibrium dynamics decision rules). We emphasize, however, that our results (as those of Boldrin and Montrucchio) are obtained under restrictions on the class of allowable demand and cost functions that for the perfectly competitive case would imply that the equilibrium is unique and globally tatonement stable. A corollary of these results is that we can find an economy with 3 identical firms with constant marginal costs and a system of demand functions with a negative Dominant Diagonal Jacobian such that its Gradient (or Best Reply) Dynamics yield chaotic behavior.

\(^{(1)}\) This mathematical result has also been used in evolutionary game theory, see, e.g. Hofbauer and Sigmund (1988).
2. THE MODEL

There are \(n \) players. Every player \(i \) has a one-dimensional strategy set \(S_i = [a_i, b_i] \subset R_+ \), with typical element \(s_i \). Let \(S = \{S_i\}_{i=1}^n \). As is customary, for any \(i \) we we also express the strategies profiles \(s \in S \) as \(s = (s_1, s_{-1}) \).\(^{(2)}\)

In this note we will be concerned with autonomous dynamical systems of the following form:

\[
\dot{s}_i = G_i(s) \quad i = 1, 2, \ldots, n, \tag{1}
\]

or, in a more compact notation:

\[
\dot{s} = G(s) \tag{2}
\]

An equilibrium of (1) is an \(s^* \in S \) such that \(G(s^*) = 0 \). Let \(DG(s) \) be the Jacobian of \(G(\cdot) \), evaluated at \(s \), and \(Tr(DG(s)) \) the trace of \(DG(s) \), i.e. the sum of all the diagonal elements. We assume the following properties:

(D) \(G_i(\cdot) \) is a continuously differentiable function, for every \(i \).

(N) \(Tr(DG(s)) \) is negative for all \(s \in S \).

(B) For every \(s \in S \) and \(i \) we have:

- if \(s_i = a_i \) then \(G_i(s) \geq 0 \),
- if \(s_i = b_i \) then \(G_i(s) \leq 0 \).

Two natural examples (for suitable choice of \(a_i, b_i \)) satisfying properties (D), (N) and (B) above are:

(1) **Best Reply dynamics**: \(\dot{s}_i = \mu_i (BRF_i(s_i) - s_i) \), \(\mu_i > 0 \), for every \(i \), where \(BRF_i(\cdot) \) stands for the (smooth) best reply function of player \(i \) and \(\mu_i \) is the speed of adjustment of strategy \(i \).

(2) The hypothesis that strategy sets are one dimensional when combined with an assumption that best replies are unique is akin to a requirement of singlepeakedness in payoff functions (see Krishna, 1992) for the use of singlepeakedness in the analysis of adjustment dynamics in games.
(2) Gradient dynamics: $\dot{s}_i = \mu_i (\partial u_i(s)/\partial s_i), \mu_i > 0$, for every i, where $u_i(s)$ is the utility payoff of player i, assumed differentiable strictly concave in its own strategy s_i. Notice that best reply dynamics is observationally indistinguishable from the Gradient dynamics generated by the "fictitious" utility function $\hat{u}_i(s) = s_i BRF(s_{-i}) - s_i^2/2$ since $\partial \hat{u}_i(s)/\partial s_i = BRF_i(s_{-i}) - s_i$.

Finally, assume the following regularity condition:

(T) The determinant of DG(s), denoted by $|DG(s)|$, is non-vanishing at any equilibrium s^*.

Let $\phi_t(\tilde{s})$ be the position of system (1) in time t as a function of \tilde{s}, an initial point in S. We will call $\phi_t(\tilde{s})$ a trajectory. We are now ready to prove our first result:

Proposition 1. If $n = 2$ then, under the hypotheses made, any trajectory $\phi_t(\tilde{s})$ converges to some equilibrium.

Proof: To be simple, we take the boundary condition to hold strictly. Let Vol E denote the volume (area in our case) of any region $E \subset S$. By Liouville's theorem (see Arnold, 1973 p. 198. A nice and self-contained proof of Liouville theorem can be found in the paper by Keenan and Rader pp. 467-8) the fact that Tr(DG(s)) < 0 implies that G contracts volume, that is, for any region $E \subset S$ with Vol $E > 0$ and for any $t > 0$ we have that Vol($\phi_t(E)$) < Vol E.

Now suppose that from some initial point \tilde{s}, the trajectory $\phi_t(\tilde{s})$ does not converge to an equilibrium. The situation must be as in Figure 1. That is, the trajectory spirals around a limit set which is formed by a finite number of M (possibly $M = 0$) of equilibria $s^*_1, ..., s^*_M$, with $s^*_i = s^*_M$, and of trajectories $\mu^*_1, ..., \mu^*_M$ such that μ^*_r connects s^*_r with s^*_{r+1} (if $M = 0$ the limit set is a limit cycle. See Lefschetz, 1946, pp.172). Under the above conditions the limit set contains a (topological) circle (it may contain more) for which its interior E is invariant and has Vol $E > 0$ (see Figure 1). Hence for $t > 0$, Vol($\phi_t(E)$) = Vol E, contradicting the hypothesis.
Our assumptions are compatible with multiple equilibria. Notice, however, that (N) imposes a restriction on the nature of these equilibria: if \(G(s) = 0 \) then \(s \) is either a sink (if \(|DG(s)| > 0 \)) or a saddle (if \(|DG(s)| < 0 \)), but never a source. Thus Figure 2 offers a simple representation of the dynamics generated by (I).

Consider for a moment the gradient dynamics. If we were dealing with a zero-sum game, that is, if \(u_1(s) + u_2(s) = 0 \) for all \(s \in S \), then it is known that under our hypothesis (including among these the concavity of payoff functions with respect to own strategies) there is a single equilibrium, which is a globally convergent saddle (see Arrow, Hurwicz and Uzawa, 1958). Thus, for the special case of one dimensional strategies, Proposition 1 can be viewed as a generalization of the convergence part of this classical result.

Next we present a general method that allows us to find the economy generating a given dynamical system. In fact, in order to show that our results do not merely reproduce those of Sonnenschein (1972), Mantel (1972) and Debreu (1974) on the characterization of excess demand functions, we will construct such an economy from a very restricted set of economies.

Definition: The set of Nice Economies (NE in the sequel) is composed by economies displaying the following characteristics:

1: There are \(n \) firms producing a differentiated product each from an unique, non produced input (e.g. labor).
2: Firms have identical and constant marginal costs.
3: The system of demand functions has a negative Dominant Diagonal, i.e. if \(X_i(p) \) is the demand function of good \(i \), for all \(p > 0 \) we have that \((\partial X_i(p)/\partial p_i) < 0 \) and \(|(\partial X_i(p)/\partial p_i) - \Sigma_{j \neq i} (\partial X_j(p)/\partial p_j)| \), \(i = 1, \ldots, n \).

We remark that any economy belonging to the set NE has a unique and globally stable Walrasian equilibrium (see e.g. Arrow and Hahn, 1971). However when oligopolistic competition is the relevant solution concept the situation is dramatically different, as is made clear by the following Proposition.
Proposition 2. Let \(\dot{p}_i = G(p_1, \ldots, p_i, \ldots, p_n) \), with \(p_i \in [a_i, b_i] \) \((a_i > 0) \), \(i = 1, \ldots, n \) be a given differentiable dynamical system with \(\frac{\partial G}{\partial p_i} < 0 \) for all \(i \). Then, there exist an economy from the set NE which generates the above equations as a gradient system.

Proof: Assume costs to be zero (a similar construction to the one below applies if costs were required to be positive). Consider \(G_i(p_1, \ldots, p_i, \ldots, p_n) \). For given \(p_{-i} \) this function is integrable in \(p_i \). Let \(F_i(p_1, \ldots, p_i, \ldots, p_n) = \int_{a_i}^{b_i} G_i(s, p_{-i}) \, ds \). Then the demand function for firm \(i \) is \(X_i = (F_i(p_1, \ldots, p_i, \ldots, p_n) + b)/p_i \) where \(b > 0 \). Notice that taking \(b \) large enough, demand is positive for every price and the Dominant Diagonal property holds since \(\sum_{j \neq i} \frac{\partial X_i(p)}{\partial p_j} \) is bounded and independent of \(b \), but \((\partial X_i(p)/\partial p_i) \) depends monotonically on \(b \) and is as large as we wish. Finally, profits for firm \(i \) are \(\pi_i = X_i p_i = F_i(p_1, \ldots, p_i, \ldots, p_n) + b \). Clearly \(\frac{\partial \pi_i(p)}{\partial p_i} = G_i(p_1, \ldots, p_i, \ldots, p_n) \).

The next Proposition considers best reply dynamics

Proposition 3. Let \(\dot{p}_i = f_i(p_{-i}) - p_i \), with \(p_i \in [a_i, b_i] \) \((a_i > 0) \), \(i = 1, \ldots, n \) be a given differentiable dynamical system. Then, there exist an economy from the set NE which generates the above equations as best reply dynamics.

Proof: Using the construction given in the proof of Proposition 2 for a system of demand functions of the form, \(X_i = f_i(p_{-i}) - p_i/2 + b/p_i \) produces the desired result.

Propositions 2 and 3 can be proved for the case of quantity setter firms with straightforward modifications. An implication of Propositions 2 and 3 is that in the case of three firms we can find Gradient (or Best Reply) dynamical systems such that they yield chaotic behavior (e.g. Lorenz's equations. See Guckenheimer and Holmes (1983) p. 93 and ff.). Details can be obtained from the authors under request.
REFERENCES

Milgrom, P., Roberts, J. "Rationalizability, Learning and Equilibrium in Games with Strategic Complementarities". Econometrica 58 (6), 1990, 1255-77.

Moulin, H. Game Theory for the Social Sciences. 1982

PUBLISHED ISSUES

WP-AD 92-01 "Inspections in Models of Adverse Selection"

WP-AD 92-02 "A Note on the Equal-Loss Principle for Bargaining Problems"

WP-AD 92-03 "Numerical Representation of Partial Orderings"

WP-AD 92-04 "Differentiability of the Value Function in Stochastic Models"

WP-AD 92-05 "Individually Rational Equal Loss Principle for Bargaining Problems"

WP-AD 92-06 "On the Non-Cooperative Foundations of Cooperative Bargaining"

WP-AD 92-07 "Maximal Elements of Non Necessarily Acyclic Binary Relations"

WP-AD 92-08 "Non-Bayesian Learning Under Imprecise Perceptions"

WP-AD 92-09 "Distribution of Income and Aggregation of Demand"

WP-AD 92-10 "Multilevel Evolution in Games"

WP-AD 93-01 "Introspection and Equilibrium Selection in 2x2 Matrix Games"

WP-AD 93-02 "Credible Implementation"

WP-AD 93-03 "A Characterization of the Extended Claim-Egalitarian Solution"

WP-AD 93-04 "Industrial Dynamics, Path-Dependence and Technological Change"

WP-AD 93-05 "Shaping Long-Run Expectations in Problems of Coordination"

WP-AD 93-06 "On the Generic Impossibility of Truthful Behavior: A Simple Approach"

WP-AD 93-07 "Cournot Oligopoly with 'Almost' Identical Convex Costs"

* Please contact IVIE's Publications Department to obtain a list of publications previous to 1992.
WP-AD 93-08 "Comparative Statics for Market Games: The Strong Concavity Case"

WP-AD 93-09 "Numerical Representation of Acyclic Preferences"
B. Subiza. October 1993.

WP-AD 93-10 "Dual Approaches to Utility"
M. Browning. October 1993.

WP-AD 93-11 "On the Evolution of Cooperation in General Games of Common Interest"

WP-AD 93-12 "Divisionalization in Markets with Heterogeneous Goods"

WP-AD 93-13 "Endogenous Reference Points and the Adjusted Proportional Solution for Bargaining
Problems with Claims"

WP-AD 94-01 "Equal Split Guarantee Solution in Economies with Indivisible Goods Consistency and
Population Monotonicity"

WP-AD 94-02 "Expectations, Drift and Volatility in Evolutionary Games"

WP-AD 94-03 "Expectations, Institutions and Growth"

WP-AD 94-04 "A Demand Function for Pseudotransitive Preferences"

WP-AD 94-05 "Fair Allocation in a General Model with Indivisible Goods"

WP-AD 94-06 "Honesty Versus Progressiveness in Income Tax Enforcement Problems"

WP-AD 94-07 "Existence and Efficiency of Equilibrium in Economies with Increasing Returns to Scale: An
Exposition"

WP-AD 94-08 "Stability of Mixed Equilibria in Interactions Between Two Populations"

WP-AD 94-09 "Imperfectly Competitive Markets, Trade Unions and Inflation: Do Imperfectly Competitive
Markets Transmit More Inflation Than Perfectly Competitive Ones? A Theoretical Appraisal"

WP-AD 94-10 "On the Competitive Effects of Divisionalization"

WP-AD 94-11 "Efficient Solutions for Bargaining Problems with Claims"
WP-AD 94-12 "Existence and Optimality of Social Equilibrium with Many Convex and Nonconvex Firms"

WP-AD 94-13 "Revealed Preference Axioms for Rational Choice on Nonfinite Sets"

WP-AD 94-14 "Market Learning and Price-Dispersion"

WP-AD 94-15 "Bargaining with Reference Points - Bargaining with Claims: Egalitarian Solutions
Reexamined"

WP-AD 94-16 "The Importance of Fixed Costs in the Design of Trade Policies: An Exercise in the Theory

WP-AD 94-17 "Computers, Productivity and Market Structure"

WP-AD 94-18 "Fiscal Policy Restrictions in a Monetary System: The Case of Spain"

WP-AD 94-19 "Pareto Optimal Improvements for Sunspots: The Golden Rule as a Target for Stabilization"

WP-AD 95-01 "Cost Monotonic Mechanisms"

WP-AD 95-02 "Implementation of the Walrasian Correspondence by Market Games"

WP-AD 95-03 "Terms-of-Trade and the Current Account: A Two-Country/Two-Sector Growth Model"

WP-AD 95-04 "Exchange-Proofness or Divorce-Proofness? Stability in One-Sided Matching Markets"

WP-AD 95-05 "Implementation of Stable Solutions to Marriage Problems"

WP-AD 95-06 "Capabilities and Utilities"

WP-AD 95-07 "Rational Choice on Nonfinite Sets by Means of Expansion-Contraction Axioms"

WP-AD 95-08 "Veto in Fixed Agenda Social Choice Correspondences"

WP-AD 95-09 "Temporary Equilibrium Dynamics with Bayesian Learning"

WP-AD 95-10 "Existence of Maximal Elements in a Binary Relation Relaxing the Convexity Condition"
WP-AD 95-11 "Three Kinds of Utility Functions from the Measure Concept"

WP-AD 95-12 "Classical Equilibrium with Increasing Returns"

WP-AD 95-13 "Bargaining with Claims in Economic Environments"

WP-AD 95-14 "The Theory of Implementation when the Planner is a Player"

WP-AD 95-15 "Popular Support for Progressive Taxation"

WP-AD 95-16 "Expanded Version of Regret Theory: Experimental Test"

WP-AD 95-17 "Unified Treatment of the Problem of Existence of Maximal Elements in Binary Relations. A Characterization"

WP-AD 95-18 "A Note on Stability of Best Reply and Gradient Systems with Applications to Imperfectly Competitive Models"
A NOTE ON STABILITY OF BEST REPLY AND GRADIENT SYSTEMS
WITH APPLICATIONS TO IMPERFECTLY COMPETITIVE MODELS*

Luis C. Corchón & Andreu Mas-Colell**

* We thank to Rose-Anne Dana, Drew Fudenberg, Paco Marhuenda, Luigi
Montrucchio and to audiences in Austin (Texas), Caltech and Duke-U. of North
Carolina at Chapel Hill for comments and suggestions. The first author
acknowledges financial support from Generalitat Valenciana, DGICYT under
project PB91/0756 and the hospitality of the Royal Complutense College at
Harvard.

** Luis C. Corchón: University of Alicante and Instituto Valenciano de
Investigaciones Economicas.
Andreu Mas-Colell: Harvard University.