Mergers of retailers with limited selling capacity

Ramón Faulí-Oller
Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las investigaciones económicas en curso, con objeto de generar un proceso de discusión previo a su remisión a las revistas científicas. Al publicar este documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.

Ivie working papers offer in advance the results of economic research under way in order to encourage a discussion process before sending them to scientific journals for their final publication. Ivie’s decision to publish this working paper does not imply any responsibility for its content.

La Serie AD es continuadora de la labor iniciada por el Departamento de Fundamentos de Análisis Económico de la Universidad de Alicante en su colección “A DISCUSIÓN” y difunde trabajos de marcado contenido teórico. Esta serie es coordinada por Carmen Herrero.

The AD series, coordinated by Carmen Herrero, is a continuation of the work initiated by the Department of Economic Analysis of the Universidad de Alicante in its collection “A DISCUSIÓN”, providing and distributing papers marked by their theoretical content.

Todos los documentos de trabajo están disponibles de forma gratuita en la web del Ivie http://www.ivie.es, así como las instrucciones para los autores que desean publicar en nuestras series.

Working papers can be downloaded free of charge from the Ivie website http://www.ivie.es, as well as the instructions for authors who are interested in publishing in our series.

Edita / Published by: Instituto Valenciano de Investigaciones Económicas, S.A.

Depósito Legal / Legal Deposit no.: V-285-2010

Impreso en España (enero 2010) / Printed in Spain (January 2010)
WP-AD 2009-26

Mergers of retailers with limited selling capacity*

Ramon Faulí-Oller**

Abstract

We consider two (symmetric) upstream firms producing independent goods that sell to consumers through symmetric retailers. The distinguishing feature of retailers is that they have a selling capacity, in the sense, that there is an upper limit in the total units of the two goods they can sell. For low enough capacity levels, we obtain that wholesale prices are increasing in the capacity and therefore we find cases where profits of retailers increase by restricting capacity. Keeping constant the industry selling capacity, we study the profitability of the merger of all retailers. For low capacity levels we obtain that wholesale prices increase with the merger and therefore the merger of retailers is not profitable.

Keywords: retailing, mergers, selling capacity

JEL Classification: L13, L41, L42

* Financial support from SEJ 2007-62656 and the Ivie are gratefully acknowledged. I thank Miguel González-Maestre and Luis Úbeda for helpful comments. I am also grateful to seminar audiences in Universitat de València and University of Alicante.
** R. Faulí-Oller: University of Alicante. E-mail: fauli@merlin.fae.ua.es.
1 Introduction

Buyer power can be defined as the ability of retailers to obtain better deals from suppliers. Lately, competition authorities have become suspicious about the ways retailers try to increase their buyer power for their possible negative effect on welfare. For example, Gabrielsen and Sorgard (1999), Dana (2006), Inderst and Shaffer (2007a) and Fauli-Oller (2007) has shown that retailers can obtain buyer power by restricting the number of goods they are selling. In this way, retailers increase competition among suppliers and increase the rents they obtain. An obvious negative effect of this type of policy is that it reduces the variety of goods available to consumers.

However, one of the shortcomings of those papers is that they do not make explicit which mechanism retailers use to commit to restrict the number of goods they want to sell. In this paper, we take seriously this commitment problem and introduce as a key parameter the dimension of the shop of retailers. The dimension determines the total number of units of all goods that the retailer can sell. Therefore the dimension of a shop refers to the selling capacity of a retailer. Given a capacity, we pose the question whether retailers want to restrict its selling capacity.

In the benchmark case, we consider two (symmetric) upstream firms producing independent goods that sell to consumers through n symmetric retailers. For low enough capacity levels, we obtain that wholesale prices are increasing in the capacity and therefore we find cases where profits of retailers would increase by restricting capacity.

In the second part of the paper we contribute to the debate on the effect of downstream mergers over buyer power. Many different reasons has been provided by the literature to explain why size obtained through merger can allow retailers to obtain better deals from suppliers. Greater size can allow retailers to break collusion among suppliers (Snyder, 1996), it may also allow retailers to threaten suppliers to vertically integrate (Katz (1987); Inderst and Wey (2007b)
and in the case of convex costs can allow retailers to obtain advantages over suppliers, because they compete less "on the margin" (Chipty and Snyder (1999).

Keeping constant the industry selling capacity, we compare the situation with one retailer with the case with \(n \) symmetric retailers. In contrast to previous results, we find that the effect of the merger on wholesale prices depends on the level of capacity. For low capacity levels we obtain that wholesale prices increase with the merger and therefore the merger of retailers is not profitable. For high capacity levels, instead, wholesale prices decrease with the merger and the merger is profitable.

In the next Section, we study, given a level of capacity, the contracting game for the case of linear wholesale prices. Then we study the profitability of mergers to monopoly in the retailing sector. In the third Section we study the effect of selling capacity for the case of general supply contracts. We obtain that a monopolist retailer finds profitable to restrict strategically capacity. Final comments put the paper to an end.

2 Model

Assume we have two producers (\(A \) and \(B \)). Producer \(A \) (\(B \)) produces good \(A \) (\(B \)). Goods \(A \) and \(B \) are independent. Demand of good \(i \) (\(i=A,B \)) is given by \(P_i = a - Q_i \), where \(P_i \) and \(Q_i \) are respectively the price and the quantity sold of good \(i \). I assume independent goods to highlight the fact that the relationship between goods comes only from capacity constraints and not from substitutability between goods on the demand side. Upstream firms sell the goods through retailers. There are \(n \) retailers. Each retailer is denoted with a natural number from 1 to \(n \). The distinguishing characteristic of each retailer is that it has a limited shelf space. In particular, we assume that the total units of the two goods that she can sell is lower than \(\frac{X}{n} \), where \(X \) is total selling capacity in the industry. In particular, if \(x^j_i \) denotes the quantity that
the retailer j sells of good i, we must have that $x^j_A + x^j_B \leq \frac{X}{n}$.

We analyze the following two stage game. In the first stage, producer i ($i = A, B$) chooses its wholesale price $w_i \leq a$. In the second stage, retailers compete à la Cournot taking into account that for all j we must have that $x^j_A + x^j_B \leq \frac{X}{n}$.

2.1 Second stage

It is well-known that, without selling capacity constraints, each retailer would sell $x^j_A = \frac{a - w_A}{n + 1}$ and $x^j_B = \frac{a - w_B}{n + 1}$. Then those will be the sales in equilibrium when

$$ \frac{a - w_A}{n + 1} + \frac{a - w_B}{n + 1} = \frac{2a - w_A - w_B}{n + 1} \leq \frac{X}{n} $$

When this constraint is satisfied we say that we are in Region 1. If we are not in Region 1, we are in Region 2, where retailers sell up to capacity. Then the maximization program of the retailer is:

$$ \max_{x_A} (a - x^j_A - \sum_{k \neq j} x^k_A - w_A)x^j_A + (a - (\frac{X}{n} - x^j_A) - \sum_{k \neq j} (\frac{X}{n} - x^k_A) - w_B)(\frac{X}{n} - x^j_A) $$

s.t. $0 \leq x^j_A \leq \frac{X}{n}$

The equilibrium of this game where retailers sell up to capacity is symmetric and it is the following:

$$ x^j_A = \frac{-w_A + w_B + X \left(\frac{n+1}{n}\right)}{2(n + 1)} \text{ and } x^j_B = \frac{-w_B + w_A + X \left(\frac{n+1}{n}\right)}{2(n + 1)} \text{ if } -w_A + w_B + X \left(\frac{n+1}{n}\right) > 0 $$

and $-w_B + w_A + X \left(\frac{n+1}{n}\right) > 0$ (Region 2i). Selling capacity constraints makes that goods become related.

$$ x^j_A = \frac{X}{n} \text{ and } x^j_B = 0 \text{ if } -w_B + w_A + X \left(\frac{n+1}{n}\right) \leq 0 \text{ (Region 2ii) } $$

$$ x^j_A = 0 \text{ and } x^j_B = \frac{X}{n} \text{ if } -w_A + w_B + X \left(\frac{n+1}{n}\right) \leq 0 \text{ (Region 2iii) } $$

The four Regions are depicted in Figure 1:
2.2 First stage

Without selling capacity constraints, the equilibrium wholesale prices are given by \(w_A^* = w_B^* = \frac{a}{2} \) and retailers sell \(x_i^T = \frac{a}{2(n+1)} \). If \(\frac{a}{n+1} \leq \frac{X}{n} \), this will still be the equilibrium of the present game, because deviation profits can not increase with the presence of selling capacity constraints.

Next, we solve the model for the case \(\frac{a}{n+1} > \frac{X}{n} \). Observe that in Figure 1 this condition was satisfied.

We analyze the optimal wholesale price of supplier \(A \) given \(w_B \). The previous picture gives us an idea about the problems involved in the maximization process. For example, if \(\frac{X(n+1)}{n} < w_B < a \), by increasing \(w_A \) from 0 we move from region 2ii, where retailers are constrained and sell only good \(A \), to Region 2i, where retailers are constrained but sell both goods and finally to Region 1 where retailers are unconstrained.

The first thing to notice is that the supplier \(A \) will never choose a \(w_A \) such that it is in the interior of Region 2ii. By increasing slightly price profits will increase, because sales will
remain constant\(^1\). She will never choose a \(w_A\) such that it is in Region 2iii. In this way, she
sells nothing and can obtain sales reducing the price to Region 2i. Then we have to study the
optimal decisions in Regions 2i and Region 1.

The equilibrium can not be in the interior of Region 1, because \((\frac{a}{2}, \frac{a}{2})\) is not located in
Region 1. The equilibrium can not be in the frontier between Region 2i and 2ii, because then
producer \(B\) sells nothing and it can not be behaving optimally. Therefore the equilibrium must
lie in the interior of Region 2i or in the frontier between Region 2i and Region 1.\(^2\) This is
formalized in the next proposition:

Proposition 1 The equilibrium wholesale prices are given by \(w^*_A = w^*_B = \frac{(n + 1)X}{n}\) if \(0 < \frac{X}{n} < \frac{2a}{3(n + 1)}\) and \(w^*_A = w^*_B = a - \frac{(n + 1)X}{2n}\) if \(\frac{2a}{3(n + 1)} \leq \frac{X}{n} < \frac{a}{n + 1}\).

As a reference, consider the situation where producers merge. Then it is very easy to derive
the optimal wholesale prices\(^3\). The merged firm will set the same wholesale price \(w^*\) for each
good that satisfies that it is the highest wholesale price such that retailers sell up to capacity.

\[
B \left(\frac{a - w^*}{n + 1} \right) = \frac{X}{n}
\]

\[
w^* = a - \frac{(n + 1)X}{2n} > a - \frac{a}{2}
\]

In this case, wholesale prices decrease with capacity and increase with competition downstream.
Then wholesale prices are the same with competition and with monopoly upstream if selling
capacity is high. Competition has an effect only when selling capacity is significantly scarce.

When capacity is low, the equilibrium lies in the interior of Region 2i where we have that
\[
\frac{X}{n} < \frac{a - w_A}{n + 1} + \frac{a - w_B}{n + 1}.
\]

\(^1\)In Region 2ii, \(w_A \leq w_B - \left(\frac{n + 1}{n} \right) X\). Then \(\frac{a - w_A}{2} \geq \left(\frac{a - w_B + \left(\frac{n + 1}{n} \right) X}{n + 1} \right) = \frac{a - w_B + \frac{X}{n}}{n + 1}\).

\(^2\)The actual shape of the best response of producer \(A\) is in the Appendix.

\(^3\)We consider the case with low capacity, \(\frac{X}{n} < \frac{a}{n + 1}\). For \(\frac{X}{n} \geq \frac{a}{n + 1}\), the equilibrium is like the case without
capacity constraints \(w^*_A = w^*_B = \frac{a}{2}\).
in n. The reason for this result is that the elasticity of demand for the intermediate input is higher the higher the competition in the downstream sector. The absolute value of the elasticity of demand of retailers of good i in Region $2i$ is given by:

$$
\varepsilon_i = \frac{n w_i}{n(-w_i + w_j) + (n + A)X}
$$

$$
\frac{\partial \varepsilon_i}{\partial n} = \frac{X}{(n(-w_i + w_j) + (n + A)X)^B} > 0
$$

This means that the higher n the more profitable is to undercut the rival producer. This explains that the equilibrium wholesale price decreases with n.

The following picture plots the wholesale price for $n = 1$ (normal line) and for a generic n (thick line). The important thing to notice is that for $X \leq \frac{na}{2n + 1}$, wholesale prices are lower when there is competition downstream. This will be very important when we study the profitability of a merger to monopoly.
2.3 Downstream mergers

The industry downstream profits as a function of X are given by:

$$\Pi^D(n) = \begin{cases}
X(a - \frac{3X}{2} - \frac{X}{n}) & \text{if } 0 \leq \frac{X}{n} \leq \frac{2a}{3(n+1)} \\
\frac{X^2}{2n} & \text{if } \frac{2a}{3(n+1)} < \frac{X}{n} \leq \frac{a}{n + 1} \\
\frac{a^2n}{2(n+1)^2} & \text{otherwise}
\end{cases}$$

The typical shape of the industry profits downstream is presented\(^4\) in Figure 3.

It is concave for low capacities, then increasing and finally constant when retailers are unconstrained. The concave part reflects a trade-off. For low capacities, increasing capacity has the positive effect on profits of increasing sales but the negative effect of increasing the wholesale prices. The decreasing part of the function identifies a region where retailers would be better-off if they would agree to restrict capacity.

Next we study the profitability of the merger of all downstream firms. A merger is said to be profitable if it increases the profits of the downstream firms ($\Pi^D(1) > \Pi^D(n)$). The merger has

\(^4\)The picture corresponds to the case $n = 4$ and $a = 1$.
the positive effect of reducing competition only if capacity is high \((X > \frac{a}{2})\), because otherwise firms sell up to capacity in any market structure. If \(X > \frac{a}{2}\), the merger is profitable, because it reduces competition and the wholesale prices do not increase with the merger. If \(X < \frac{a}{2}\), the merger will be profitable if it reduces wholesale prices. Using Proposition 1, this will be the case when \(a - X < \left(\frac{n+1}{n}\right) X\). Next proposition states the result on profitability.

Proposition 2 With competition upstream, the merger to monopoly of downstream firms is not profitable if \(0 < \frac{X}{n} \leq \frac{a}{2n + 1}\) and profitable otherwise.

It is very easy to find the counterpart of proposition 2 for the case where producers merge. As we have said before, the wholesale price is given by

\[
w^*_A = w^*_B = w^* = \begin{cases} \frac{a - \frac{(n+1)X}{2n}}{n+1} & \text{if } \frac{X}{n} \leq \frac{a}{n+1}, \\ \frac{a}{2} & \text{otherwise} \end{cases}
\]

If \(\frac{X}{n} > \frac{a}{n+1}\), the merger is profitable because it restricts sales. If \(\frac{X}{n} \leq \frac{a}{n+1}\), the merger is profitable because it reduces wholesale prices. Next proposition summarizes.

Proposition 3 Without competition upstream, the merger to monopoly of downstream firms is always profitable.

Putting together propositions 2 and 3, we obtain that the merger of the upstream firms stimulates the merger of downstream firms. This is coherent with the empirical fact that parallel processes of consolidation in both upstream and downstream sectors are observed.

3 General supply contracts

In this Section, we study the effect of constraints on the selling capacity when supply contracts are general. We focus on the case of a monopolist retailer to be able to import results from
Bernheim and Whinston (1998). Their main focus is on exclusive contracts, but to know their effect they also study the situation where they are not possible. This is the case we are interested in. To generalize the model to \(n \) retailers is far from obvious and it is left for future research.

We consider that selling capacity is \(X < a \) and study the following contracting game. In the first stage, producers (\(A \) and \(B \)) offer supply contracts \(P_i(x_i) \) (\(i = A, B \)). Each contract is a function that maps the sales of good \(i \) \(x_i \) to a monetary payment. In the second stage, the retailer decides whether to accept the contract or not. In the third stage, the retailer chooses the level of sales. The timing again is the same as in Bernheim and Whinston (1998).

Before stating the equilibrium, we introduce the following definitions. Given sales \((x_A, x_B) \), total industry profits are given by:

\[
R(x_A, x_B) = (a - x_A)x_A + (a - x_B)x_B.
\]

We have that

\[
(x^*, x^*) = \arg\max_{x_A, x_B} \{ R(x_A, x_B) \text{ s.t. } x_A + x_B \leq X \} = \left(\frac{X}{2}, \frac{X}{2} \right)
\]

\[
y^* = \arg\max_{x_A} \{ R(x_A, 0) \text{ s.t. } x_A \leq X \} = \begin{cases}
X & \text{if } X \leq \frac{a}{2} \\
\frac{a}{2} & \text{otherwise}
\end{cases}
\]

\[
z^* = \arg\max_{x_B} \{ R(0, x_B) \text{ s.t. } x_B \leq X \} = \begin{cases}
X & \text{if } X \leq \frac{a}{2} \\
\frac{a}{2} & \text{otherwise}
\end{cases}
\]

Observe that symmetry implies that \(y^* = z^* \).

Then the maximal profits at the industry level are \(\Pi = R(x^*, x^*) \) and the maximal profits if the retailer can only trade with producer \(i \) is \(\Pi^i = R(y^*, 0) = R(0, z^*) \). Observe that \(X < a \) implies that

\[
\Pi < \Pi^A + \Pi^B
\]
that is Assumption B2 in Bernheim and Whinston (1998)\(^5\). Then, we rewrite Proposition B in Bernheim and Whinston (1998).

Proposition 4 (Proposition 2 Bernheim and Whinston (1998)) There is an equilibrium of the contracting game in which the retailer accepts both manufacturer’s contracts and chooses \((x^*, x^*)\).

The payoff of the retailer is \(\Pi^A + \Pi^B - \Pi\). Furthermore, this equilibrium weakly dominates (for the manufacturer) any other equilibrium of this game.

The payoff of the retailer is given by:

\[
\Pi^A + \Pi^B - \Pi = \begin{cases}
X(a - \frac{3X}{2}) & \text{if } X \leq \frac{a}{2}, \\
\frac{a^2}{2} - (a - \frac{X}{2})X & \text{otherwise.}
\end{cases}
\]

The important thing is that this payoff is concave with a maximum at \(X = \frac{a}{3}\). Therefore, it holds that by making shelve space scarce, the retailer can increase the rents obtained from the vertical structure. Next proposition summarizes.

Proposition 5 Assume that the retailer can choose the selling capacity at no cost before the contracting game and its equilibrium is the one in Proposition 4. Then she would restrict capacity to \(X = \frac{a}{3}\).

4 Conclusion

In the present paper, we have explicitly modelled the dimension of retailers. This has shed light on its possible strategic use vis-à-vis suppliers. We have showed that by restricting capacity retailers increase the competition of suppliers for the scarce shelving space. Suppliers react to it by lowering their wholesale prices. Furthermore, we have showed that when industry capacity

\(^5\)Observe that in our case Assumption B1 in Bernheim and Whinston (1998) holds with equality. Footnote 12 in the paper clarifies that in this case all the results still hold.
is low and retailers are constrained, mergers increase wholesale prices. The reason is that the demand of suppliers become more elastic as competition downstream increases.

In future work, I would like to study the strategic choice of selling capacity in oligopoly. The optimal capacity will be the result of the balance of two effects: on the one hand, reducing capacity reduces wholesale prices and, on the other hand, increasing capacity increases sales. If we assume that suppliers can not price discriminate and therefore price concessions are granted to any retailer, we can easily conclude that the noncooperative effort to reduce wholesale prices will be lower than the one that maximizes retailers profits. This will result in the capacity level be higher than the one that maximizes retailers profits.

This can be connected with the existing laws in different countries that impose legal limits to the creation of new selling capacity. For example, in France, la Loi Raffarin impose legal requirements that result in delays in the enlargement and creation of shopping centers. In Spain, many regional governments, i.e. Catalonia, establish periods of time where no new big supermarket can be created. Those laws are justified as a means of protecting small retailers. However, they may have the side-effect of increasing the profits of incumbent big retailers at the expense of suppliers.
5 Appendix

The best response of supplier A is given by.

If $0 < \frac{X}{n} \leq \frac{a}{3(n+1)}$

$$B_A(w_B) = \begin{cases}
\frac{nw_B + (n+1)X}{2n} & \text{if } 0 \leq w_B \leq \frac{3(n+1)X}{n} \\
\frac{2n}{w_B - \frac{(n+1)X}{n}} & \text{if } \frac{3(n+1)X}{n} < w_B \leq a
\end{cases}$$

If $\frac{a}{3(n+1)} \leq \frac{X}{n} \leq \frac{a}{2(n+1)}$

$$B_A(w_B) = \begin{cases}
\frac{nw_B + (n+1)X}{2n} & \text{if } 0 \leq w_B \leq \frac{4a}{3} - \frac{(n+1)X}{n} \\
\frac{2n}{4a - \frac{(n+1)X}{n} - w_B} & \text{if } \frac{4a}{3} - \frac{(n+1)X}{n} < w_B \leq a
\end{cases}$$

If $\frac{a}{2(n+1)} \leq \frac{X}{n} \leq \frac{a}{n+1}$

$$B_A(w_B) = \begin{cases}
\frac{nw_B + (n+1)X}{2n} & \text{if } 0 \leq w_B \leq \frac{4a}{3} - 2X \\
\frac{2a - 2X - w_B}{2} & \text{if } \frac{4a}{3} - \frac{(n+1)X}{n} < w_B \leq \frac{3a}{2} - \frac{(n+1)X}{n} \\
\frac{a}{2} & \text{if } \frac{3a}{2} - \frac{(n+1)X}{n} < w_B \leq a
\end{cases}$$

Given X, this reaction function crosses the 45 degree line only once. This crossing point determines the equilibrium in wholesale prices that is stated in proposition 1.
6 References

“Does sex education influence sexual and reproductive behaviour of women? Evidence from Mexico”
P. Ortiz. February 2009.

“Expectations and forward risk premium in the Spanish power market”

“Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith algorithm”

“Employee types and endogenous organizational design: an experiment”

“Quality of life lost due to road crashes”
P. Cubí. February 2009.

“The role of search frictions for output and inflation dynamics: a Bayesian assessment”

“Factors affecting the schooling performance of secondary school pupils – the cost of high unemployment and imperfect financial markets”

“Sexual orientation and household decision making. Same-sex couples’ balance of power and labor supply choices”

“Advertising and business cycle fluctuations”

“Education and selective vouchers”

“Does increasing parents’ schooling raise the schooling of the next generation? Evidence based on conditional second moments”

“Equality of opportunity and optimal effort decision under uncertainty”

“Policy announcements and welfare”

“Plurality versus proportional electoral rule: study of voters’ representativeness”

“Matching and network effects”

“Generalizing the S-Gini family –some properties-”

“Non-price competition, real rigidities and inflation dynamics”

“Should we transfer resources from college to basic education?”

“Immigration, family responsibilities and the labor supply of skilled native women”

“Collusion, competition and piracy”

“Information and discrimination in the rental housing market: evidence from a field experiment”

“Pricing executive stock options under employment shocks”

“Who moves up the career ladder? A model of gender differences in job promotions”

“Strategic truth and deception”

“Do social networks prevent bank runs?”

“Mergers of retailers with limited selling capacity”

* Please contact Ivie's Publications Department to obtain a list of publications previous to 2009.
Does sex education influence sexual and reproductive behavior of women? Evidence from Mexico

Pamela Ortiz

WP-AD 2009-01