UN ANALISIS MICROECONOMETRICO DE LA DEMANDA DE TURISMO EN ESPAÑA*

Juan M. Pérez y Amparo Sancho**

WP-EC 92-10

* Los autores quieren agradecer los valiosos comentarios de R. Blundell y A. Urbano. También quieren agradecer la ayuda prestada por J.M. Labeaga.

** Universitat de València.
UN ANALISIS MICROECONOMETRICO DE LA DEMANDA DE TURISMO EN ESPAÑA

Juan Manuel Pérez y Amparo Sancho

RESUMEN

Este estudio presenta un modelo de gasto para el segmento nacional de la demanda de turismo en España, utilizando datos microeconómicos.

El modelo asume el supuesto de maximización de la utilidad en cada período. Presentamos el modelo como un modelo de elección renta-ocio, en donde obtenemos la elasticidad-renta y la propensión marginal al consumo. El sistema de demanda utilizado es un Sistema Cuasi-Ideal (AIDS), y en la estimación se permite el censuramiento.

ABSTRACT

This paper introduces an expenditure model for the domestic demand of Spanish tourism using microeconomic data.

The model starts with the assumption of consumer utility maximization for each period. The model is presented as an income-leisure model obtaining the income elasticity and the marginal propensity to consume. The model is an Almost Ideal Demand System, and in econometric estimation censoring is allowed for.
1.- INTRODUCCION.

El objetivo de este estudio es realizar una aproximación a un modelo de demanda de turismo para los consumidores españoles.

Con este trabajo intentamos acercarnos al conocimiento de los factores que entran a formar parte de la decisión de demandar turismo, por un lado, y de qué parte del presupuesto dedicará el individuo a dicha demanda de turismo, por la otra.

Cuando se trata de estudiar el turismo desde este punto de vista, se plantean tres problemas básicos.

En primer lugar, se encuentra el problema de la obtención de un modelo de corte microeconómico que permita una adecuada modelización del comportamiento del turista.

En base a esta consideración, se plantea un modelo teórico para la demanda de turismo, en donde se contempla esta demanda como derivada de la de ocio.

El segundo problema que se presenta, hace referencia a la qué tipo de sistema de demanda nos puede proveer de una buena aproximación a la participación relativa del gasto en turismo dentro del presupuesto del individuo. Hemos seleccionado un Sistema de Demanda Cuasi-Ideal (AIDS). El modelo propuesto se encuentra en la segunda parte de este trabajo.

El tercer problema que se plantea, después de la modelización económica, surge de la propia naturaleza de la información disponible, dado que cuando observamos datos microeconómicos referentes a la demanda de cualquier bien, y especialmente en el caso que nos ocupa, se observa que una parte no negligible de los individuos no consumen cantidad alguna de dicho bien.
Nuestro modelo teórico nos proporciona la información necesaria acerca de la naturaleza de dichas observaciones nulas. Es este un modelo en donde el consumo de turismo *no es siempre positivo*. De hecho, hay individuos que eligen consumir una cantidad nula del bien turismo. Además, estos consumos nulos tienen un doble origen: existen individuos que simplemente no consumen turismo porque ni siquiera se toman vacaciones en dicho período, mientras que otros individuos, habiéndose tomado vacaciones, se encuentran con condiciones adversas que les llevan a no demandar turismo en absoluto.

Un elemento importante a tener en cuenta, es el sesgo en la estimación en que se incurre al utilizar técnicas econométricas tradicionales cuando tratamos con muestras de estas características, dado el carácter censurado de la información.

Esta circunstancia nos obliga a trabajar con una clase muy especial de modelos econométricos en donde la importancia de los supuestos distribucionales constituye un punto altamente crítico. Por esta razón dedicamos la tercera parte del estudio a la discriminación entre distintos estimadores de tipo paramétrico, y al contraste de los supuestos distribucionales. Se procede a la formulación de un test de normalidad basado en los residuos generalizados calculados a partir de los modelos estimados.\(^1\)

La información utilizada, ha sido la suministrada por la Encuesta Permanente de Consumo (EPC), llevada a cabo por el INE entre el segundo trimestre de 1.977 y el cuarto de 1.983.

2.- MODELO TEORICO.

Suponemos que nos encontramos ante un consumidor/trabajador, que cumple los axiomas básicos de reflexividad, completitud, transitividad, continuidad, no saciabilidad y convexidad. Bajo estas condiciones la función de utilidad del individuo existe, es cuasi-cóncava y dos veces diferenciable.

Un supuesto importante en el modelo es que los individuos tienen el mismo tipo de función de utilidad, y que la única diferencia entre las funciones de dos individuos, viene dada por un parámetro \(\theta_i \), que viene a expresar lo sesgadas que se encuentran las preferencias del individuo i, hacia el consumo de ocio. En otras palabras, \(\theta_i \) influye en la "inclinación" de las curvas de indiferencia, de forma que a mayores \(\theta_i \) nos encontraremos ante curvas más sesgadas en favor del ocio.

También se supone que el consumidor determina en primer lugar su oferta de trabajo, medida en horas/año, de forma óptima, de manera que el total de horas de ocio elegidas viene representado por \(L^2 \).

Por otra parte, los ingresos por período del individuo son de dos tipos, ingresos no salariales, es decir, no derivados del trabajo, \(\mu_i \), e ingresos salariales, que no son más que el número de horas trabajadas multiplicadas por el salario por hora, \(\omega^* \cdot h \). Por último supondremos que existe información perfecta.

Bajo las condiciones especificadas, nuestro agente, va a plantearse una decisión de tipo secuencial. En primer lugar, el individuo deberá determinar su oferta de horas de trabajo en el período, o alternativamente, la duración óptima de sus vacaciones. En segundo lugar, el individuo elige su demanda óptima de turismo como parte de su demanda total.

\[^2\text{Asumiremos que el consumidor tiene la libertad de determinar el número de horas que desea ofrecer en el mercado de trabajo.}\]
La idea teórica del modelo es la maximización de la función de utilidad [1] y sujeta a la restricción [2].

\[
\text{MAX } U_i (M_i, L_i; \theta_i) \quad [1]
\]
\[
s.a. \quad M_i = \omega (T_D - L_i) + \mu_i \quad [2]
\]

con \(\theta_i = \theta (\delta' D_i) \), donde \(D_i \) es un vector de k variables socioeconómicas, \(\delta \) es un vector de parámetros conformable, \(M_i \) es el ingreso total del individuo y \(T_D \) es el tiempo total disponible en el período.

La Figura 1 muestra de forma gráfica la restricción expresada en la ecuación [2].

\[\text{FIGURA 1}\]
\[\text{Las tres soluciones del consumidor}\]

Como se puede apreciar en la Figura 1, nuestra restricción presupuestaria muestra dos esquinas. En la esquina B, la cantidad elegida de ocio será la máxima, \(T_D' \), mientras que si nos colocamos en la esquina A, estaríamos eligiendo una cantidad total de ocio nula, o lo que es igual, una duración nula de las vacaciones. Además entre esos dos puntos, el individuo puede
intercambiar ocio por renta a una tasa, \(1/\omega \), que no son más que los precios relativos\(^3\).

Del problema de optimización anterior, el consumidor va a obtener unas funciones de demanda de renta y ocio, que, en general, van a depender de todos los parámetros del modelo, es decir,

\[
M_i^* = M(T_D, \omega, \mu_i, \theta_i) \tag{3}
\]

\[
L_i^* = L(T_D, \omega, \mu_i, \theta_i) \tag{4}
\]

En este modelo caben dos tipos de soluciones, de esquina e interior, y el tipo de solución que obtengamos depende crucialmente de la "inclinación" de las preferencias del individuo, y por tanto de \(\theta_i \).

La utilidad marginal del ocio y de la renta dependen también de este parámetro, y por tanto, a través de ellas, también lo hace la relación marginal de sustitución entre ocio y renta dada por,

\[
RMS_{LM}^i = \frac{U_L(M_i, L_i; \theta_i)}{U_M(M_i, L_i; \theta_i)} = \Theta(M_i, L_i; \theta_i) \tag{5}
\]

En estas condiciones, caben tres posibilidades para la solución del consumidor,

a) que \(\theta_i \) sea tal que \(RMS_{LM}^i > \omega \) para todo el dominio de la función de utilidad. En este caso, tenemos la solución B de la Figura 1, en donde el individuo no trabaja y dedica todo el tiempo disponible al ocio, \(L_i^* = T_D \).

b) que \(\theta_i \) sea tal que \(RMS_{LM}^i < \omega \) para todo el dominio de la función de utilidad. En este caso alcanzamos la solución de esquina A, en donde el

\(^3\) Nótese que el precio del ocio viene dado por el salario por hora trabajada - sería el coste de oportunidad de tomarse una hora de ocio -, mientras que el precio de la renta es la unidad.
individuo decide dedicar todo su tiempo disponible al trabajo, y por tanto nada al ocio, $L^* _i = 0$.

Los individuos en este grupo eligen cantidades óptimas para n bienes de consumo, entre los cuáles no figura el turismo.

c) que $\theta _i$ sea tal que $RMS _{LM} ^1 = \omega$ para algún punto en el dominio de la función de utilidad. En este caso, tenemos una solución interior como la C, en donde el individuo elige cantidades positivas tanto de ocio como de trabajo.

Para este grupo de individuos la función a maximizar es,

$$\text{MAX} \quad U_i (H, T_i; \theta _i) \quad \quad \quad [6]$$

s.a. \quad $PH + f(L_i ^*) p_i = M_i ^* \quad \quad \quad [7]$

con $T_i = f(L_i ^*)$, donde T_i es la cantidad de turismo consumida por el individuo en el período, p_i el precio del turismo, H una mercancía agregada construida a partir de los n bienes de consumo4, y P su precio.

Podemos reescribir la ecuación [7] en forma de las participaciones en el gasto total, de cada una de las partes que lo componen, de forma que,

$$w_{ij} + w_k = 1 \quad \quad \quad \quad \quad [8]$$

con,

$$w_{ij} = \frac{PH}{M_i ^*} \quad \quad \quad \quad \quad w_k = \frac{T_i p_i}{M_i ^*}$$

4H sería el agregado de Hicks. Es lícito construir este tipo de agregados siempre y cuando supongamos que los n precios relativos permanecen constantes. Nótese que este no es un supuesto muy restrictivo dado que vamos a utilizar datos cross-section.
donde \(w_{ij} \) es la participación en el gasto del individuo de los bienes distintos del turismo, mientras que \(w_{ik} \) representa la participación relativa del turismo.

La solución a este problema viene dada por las funciones de demanda,

\[
\begin{align*}
w_{ij}^* = & T(P, p_t, L_i^*, M_i^*; \theta) = T(P, p_t, T_D, \mu_i, \omega; \theta) \quad [9] \\
w_{ij}^* = & H(P, p_t, L_i^*, M_i^*; \theta) = H(P, p_t, T_D, \mu_i, \omega; \theta) \quad [10]
\end{align*}
\]

El modelo que presentamos nos permite hacernos una idea muy clara de la conducta del consumidor en las dos soluciones de esquina a las que nos referimos antes.

En orden a obtener una especificación empírica apropiada de la proporción que el gasto en turismo representa dentro del presupuesto del consumidor asumiremos que las preferencias son del tipo PIGLOG (Price Independent Generalised Logarithmic Form, Muellbauer (1974)), en donde la función de demanda viene dada por,

\[
w_{it} = \alpha_t + \sum_j \gamma_{ij} \ln p_j + \sum_k \delta_k Z_{ik} + \beta_i R_{it} \quad [11]
\]

donde,

\[
R_{it} = \ln M_i - \ln a(p, Z_{it}) = \ln M_i - \ln P^*
\]

y

\[
\ln P^* = \sum_{j=1}^J w_{ij} \ln p_j
\]

donde \(P \) es el vector de precios de los \(n \) bienes de consumo, en donde se incluye el turismo, y \(\ln P^* \) es un índice de precios de Stone para el individuo i. Este sistema de demanda es conocido en la literatura como AIDS (Almost Ideal Demand System), Deaton y Muellbauer (1980), el cual presenta
considerables ventajas frente otros sistemas, como el Translog o el Rotterdam, y su interpretación es relativamente sencilla, ya que, en ausencia de cambios en los precios relativos, en la renta real, y en las características socioeconómicas del individuo, las participaciones relativas de los bienes dentro del gasto del consumidor SON CONSTANTES.

Además, es interesante comprobar, que los estimados, miden el cambio en \(w_{it} \) derivado de una unidad de cambio proporcional en \(p_{j} \) manteniéndose constante la renta real, mientras que los \(\beta_{i} \) nos recogen la misma información con respecto a cambios en la renta real. En este sentido, es evidente, que un \(\beta_{i} > 0 \) implicará que el bien en cuestión es un lujo, y un \(\beta_{i} < 0 \) una necesidad.

A continuación se recogen las expresiones de las Elasticidades Precio y Renta, así como de la Propensión Marginal al Consumo, que se derivan del sistema anterior.

\[
E_{it} = \left(\frac{\partial q_{it}}{\partial p_{i}} \right) \left(\frac{p_{i}}{q_{it}} \right) = -(1 - \beta_{p} / w_{it}) \quad [14]
\]

\[
E_{M} = \left(\frac{\partial q_{it}}{\partial M} \right)(M / q_{it}) = (1 + \beta_{M} / w_{it}) \quad [15]
\]

donde \(q_{it} \) es la cantidad demandada de turismo, \(p_{i} \) el precio del turismo, \(M \) el ingreso total, \(\beta_{p} \) y \(\beta_{M} \) los parámetros de precios e ingreso correspondientes y \(w_{it} \) la participación del gasto en turismo dentro del gasto total.

La Propensión Marginal al Consumo viene dada por,

\[
P M C \ w \ E_{M} \quad [16]
\]

Este es, por tanto, el marco teórico para la demanda de turismo, a partir del cual podemos establecer la especificación econométrica.\(^5\)

\(^5\)De ahora en adelante, expresaremos solamente el subíndice para el individuo, ya que nos referiremos al turismo en todo momento.
3. ESPECIFICACIONES ECONOMETRICAS PARA LA DEMANDA DE TURISMO

El objetivo básico de esta sección es el de plantear un modelo econométrico que recoja de forma adecuada el comportamiento del consumidor perfilado en la sección anterior.

La primera precaución que debemos tomar en esta fase, se deriva de la naturaleza de la información disponible, ya que estamos tratando con una muestra de carácter censurado, dado que ciertos individuos en la muestra, no consumen cantidad alguna de turismo, mientras que otros consumen una cantidad positiva.

Este problema, nos lleva directamente al uso de una clase especial de modelos econométricos que puedan recoger los procesos en la conducta del consumidor analizados; el modelo que explica la decisión de demandar turismo, y aquel que determina la cantidad concreta que se demanda del bien turismo.

Además, OLS aplicados a este tipo de muestras, proporciona estimadores inconsistentes, a causa de que la regla de censuramiento introduce un sesgo de selección.

El más simple de los modelos disponibles que es capaz de recoger el proceso de participación en el mercado, es el modelo PROBIT. En dicho modelo, la variable endógena es de tipo dicotómico, tomando el valor 1 si el individuo consume una cantidad positiva, y 0 si no consume cantidad alguna.

Debe quedar claro que la aplicación de este modelo a nuestra muestra, nos permitirá identificar aquellos elementos que se revelan significativos en la decisión de elegir una cantidad positiva de ocio en un período dado.

Otro modelo ampliamente utilizado en este contexto es el TOBIT, Tobin (1958). Este modelo nos permite el tratamiento de los dos procesos mencionados, pero plantea el problema de que no nos permite distinguir entre
ambos, ya que en el modelo ambos son tratados en la misma ecuación, con las mismas variables y parámetros.

Un rasgo importante del modelo Tobit, es que su función de verosimilitud puede ser descompuesta en dos partes diferenciadas, una de ellas correspondiente a la función de verosimilitud del Probit, y la otra a la verosimilitud del modelo de regresión truncado, de manera que, tomando la expresión de la función del Tobit, y después de unas sencillas manipulaciones, llegamos a la siguiente expresión6,

$$\log L = \sum_{0} [1 - F(\beta'X/\sigma)] + \sum_{i} F(\beta'X/\sigma) + \sum_{i} \sigma^{-1} \frac{f[(w_i - \beta'X)/\sigma]}{F(\beta'X/\sigma)} \tag{17}$$

donde F y f son la función de distribución y de densidad de una variable normal estandarizada respectivamente, \sum_{0} es la suma sobre la parte de la muestra donde $w_i = 0$, mientras que \sum_{1} es la suma sobre la muestra con $w_i > 0$.

Heckman (1979) propuso un método de estimación alternativo para el modelo censurado que ha tenido una amplia aceptación. La idea básica es la de estimar el sesgo de selección, e introducirlo en la ecuación a estimar y muestra como los estimadores obtenidos de esta forma, son consistentes.

Pero para nosotros, podría resultar más interesante algún modelo alternativo de tipo bivariante7, refiriéndonos con este apelativo a la presencia en el modelo latente de dos variables endógenas, una relativa al problema de participación, y la otra al de la determinación de la cantidad demandada. Uno de los modelos bivariantes más extendidos es el Modelo de Selectividad (Selectivity Model), propuesto en el propio Heckman (1974), y desarrollado posteriormente en Heckman (1979).

6X es el conjunto de variables explicativas del modelo.

7Véase Blundell R. & Meghir C. (1987).
La idea del modelo de Heckman, es considerar dos variables dependientes, una proveniente del problema de participación, D_i^*, y la otra determinante de la cantidad de la demanda de, en este caso, turismo, w_i. El modelo presenta la siguiente estructura,

$$
\begin{align*}
 w_i^* &= \beta'X_i + u_i \\
 D_i^* &= \alpha'Z_i + \varepsilon_i
\end{align*}
$$

[18]

donde X_i y Z_i son conjuntos de variables predeterminadas, β y α son vectores paramétricos conformables, u_i y ε_i son realizaciones aleatorias de una variable normal con media cero y matriz de covarianzas Σ, dada por,

$$
\Sigma = \begin{pmatrix}
 \sigma_{11} & \sigma_{12} \\
 \sigma_{12} & \sigma_{22}
\end{pmatrix}
$$

[19]

y la variable dependiente observable queda definida por,

$$
\begin{align*}
 w_i &= \begin{cases}
 w_i^* & \text{si } D_i^* \geq 0 \\
 0 & \text{en otro caso}
 \end{cases}
\end{align*}
$$

[20]

En otras palabras la variable latente es observada sólo si D_i^* es positiva, mientras que la primera variable constituye un proceso latente de tipo continuo (consumo, horas de trabajo, etc...), sobre el que imponemos un proceso de censuramiento dado por la segunda.

La estimación del modelo propuesto es,

$$
\begin{align*}
 w_i &= \beta'X_i + \sigma_{12}/(\sigma_{22})^{1/2} \lambda(z_i) + v_{1i} \\
 D_i &= \alpha'Z_i + \sigma_{22}/(\sigma_{22})^{1/2} \lambda(z_i) + v_{2i}
\end{align*}
$$

[21]
en donde obtenemos estimaciones consistentes para z_i y $\lambda(z_i)$, y posteriormente sustituimos dichas estimaciones en las ecuaciones [21] con lo que obtenemos un estimador consistente para β y $\gamma = \sigma_{12}/(\sigma_{22})^{1/2}$.

Otro posible candidato a ser utilizado es el Modelo de Doble Valla (Double-Hurdle Model) propuesto en Cragg (1971).

Dicho modelo se expresa como,

$$
D_i^* = \left(\theta_i - \theta_i^* \right) = \alpha' Z_i + \varepsilon_i
$$

$$
\begin{pmatrix}
\varepsilon_i \\
u_i
\end{pmatrix} \sim N(0, \Sigma)
$$

$$
w_i^* = \beta' X_i + u_i
$$

$$
w_i = \begin{cases} w_i^* & \text{si } w_i^* > 0 \text{ y } D_i^* > 0 \\ 0 & \text{en otro caso} \end{cases}
$$

[22]

En este modelo, se deben sobrepasar dos "barreras" antes de poder observar un consumo positivo de turismo. En este modelo θ_i^* se configura como el valor de θ_i por debajo del cual nos encontraríamos en la solución de esquina B en la Figura 1. Aquellos individuos que presenten un θ_i menor que dicho valor (i.e., individuos con preferencias menos sesgadas hacia el ocio que θ_i^*), presenta una solución de esquina en donde el consumo deseado de ocio es nulo. Bajo estas condiciones, D_i^* se configura como una variable no-observable que determina si el individuo es un turista potencial o no. Es fácil apreciar que el modelo propuesto por Cragg es una generalización del modelo Tobit. De hecho el modelo Tobit es un caso anidado del Doble-Valla, ya que si eliminamos la primera "valla", el modelo se transforma en el Tobit standard. En efecto, si todos los individuos fuesen turistas potenciales en el sentido de que nadie desea demandar una cantidad nula de ocio, estamos en el

$^8\lambda(z_i)$ es el inverso del ratio de Mill.
caso Tobit, en donde implícitamente estamos asumiendo que la probabilidad de que un individuo participe en el mercado es unitaria, y por tanto,

\[\Pr(D_1 > 0) = F(\alpha'Z_1) = 1 \]

[23]

La ecuación [17], también nos servirá para proceder a la construcción de un test ratio de verosimilitud con el objetivo de discriminar entre el Tobit y los modelos anteriormente expuestos.

Con esto hemos hecho un breve repaso a los modelos econométricos más importantes que nos permiten dar un adecuado tratamiento a las muestras de carácter censurado.

No ha sido ésta una presentación exhaustiva ya que existen otros modelos que podemos utilizar en este contexto, i.e. P-Tobit propuesto por Deaton & Irish (1984), Switching Regression Models, y otros.
4.- ESTIMACION DEL MODELO DE DEMANDA.

Después de realizar una revisión por los posibles modelos econométricos que pueden utilizarse en el tratamiento de este tipo de problemas, pasamos al apartado de estimación. Primeramente describiremos las características de la muestra y de las variables utilizadas, para, posteriormente, pasar a la exposición de los resultados de los procesos de estimación.

4.1.- Información estadística.

La información utilizada ha sido la que proporciona la encuesta Permanente de Consumo (EPC), una encuesta llevada a cabo por el INE entre el segundo trimestre de 1977 y el cuarto de 1983. En realidad esta encuesta constituye un panel de datos en donde 2.000 individuos distribuidos aleatoriamente por toda España son seguidos durante 27 trimestres. Este es un panel incompleto en donde un 5% de los individuos se sustituyen de forma aleatoria cada trimestre.

El individuo objeto de la encuesta es la unidad familiar. Nosotros vamos a tratar la familia como un sólo individuo, pues normalmente actúa de forma conjunta con respecto a este tipo de gastos.

A partir del panel original, se ha construido un panel completo, es decir un panel en donde todos los individuos permanecen durante todos los períodos. De esta manera, el panel definitivo a partir del cual se ha empezado a trabajar, lo constituyen 414 individuos a lo largo de 24 trimestres, i.e. - desde 1978 a 1983, ambos años completos.

Como el principal objetivo de este estudio, era la estimación de modelos cross-section, se ha procedido a generar 6 muestras, una para cada año, desde 1978 a 1983 ambos inclusive. Para ello, cada año, se ha procedido a agregar
los gastos de cada trimestre para cada individuo. El resto de características individuales no han generado problemas, pues no cambian. En caso de haber alguna característica que sí que cambie de un trimestre para otro dentro del mismo año, como por ejemplo, la edad del cabeza de familia, se ha elegido siempre la característica que el individuo presentaba el último trimestre del referido año.

Así pues, después de este proceso, nos encontramos ante 6 cross-section con 414 observaciones cada una, una para cada individuo, de carácter anual. Un elemento importante que es necesario citar, es que en todas estas muestras, una vez construidas, se ha procedido al control de los individuos para eliminar aquellos que presentan problemas\(^2\). La variable de control elegida fue el nivel de instrucción, y así, se eliminaron de cada muestra aquellos individuos que presentaban cambios anormales en dicha variable. Como resultado de este proceso de depuración de la información nos encontramos ante 6 cross-section en donde el número de individuos varía desde los 380 de 1978 a los 377 que tiene la muestra de 1983.

4.2.- Descripción de las variables.

Procederemos a la descripción de las dos variables más importantes que hemos utilizado en nuestras estimaciones, dejando la descripción del resto de variables en el Apéndice II.

\(^2\)Existían individuos cuyas respuestas eran claramente erróneas. Todos ellos presentaban cambios anormales en la mayoría de las características. Una posible causa de estos fallos, es que no sea la misma persona la que responde al cuestionario en todos los trimestres.
4.2.1.- Gasto en turismo.

Esta variable es la variable objeto de nuestro estudio, y por tanto constituye la variable endógena en todos y cada uno de los modelos estimados.

Esta variable es el resultado de la agregación de tres partidas de gasto de la EPC dentro del epígrafe 9.3. "Gastos en Hostelería y Turismo"\(^{10}\). Dichas partidas son las siguientes,

911. "Gastos de hostelería".
912. "Alquileres de temporada".
913. "Viajes organizados".

4.2.2.- Índices de precios.

En total se ha necesitado utilizar tres índices de precios: el índice de precios al consumo, el índice de precios del turismo\(^{11}\) y un índice de precios de Stone.

El índice de precios de Stone se ha construido en este caso concreto como,

\[
\text{STONE}_i = \ln \frac{P_i^e}{P_i} = \ln \text{IPT}_i + \ln \text{TUR} + \ln \text{IPC}_i + \text{RESTO} \quad i=1,2,...,414
\]

en donde RESTO es la participación de todos los bienes excepto el turismo dentro del presupuesto del individuo \(i\).\(^{12}\)

\(^{11}\)Este índice pertenece a la tesis doctoral de R. Padilla y ha sido suministrado por el Banco de España. Estos índices se recogen en el cuadro n.

\(^{12}\)Los índices utilizados quedan expuestos en el Apéndice I.
Hubiese sido lógico pensar que la existencia de un precio único para cada zona geográfica, fuese una cierta limitación de este trabajo. Este supuesto nos obliga a pensar que familias con idénticas condiciones, pero en autonomías distintas, tienen el mismo precio para el turismo, cuando sabemos que éste depende de la distancia. Pero la dificultad de encontrar un índice de precios, válido, para el turismo (incluso a nivel nacional) nos ha obligado a la no diferenciación de precios para cada área geográfica.

4.3.- Resultados de la estimación.

En esta subsección procederemos a mostrar los resultados que se han obtenido de la estimación de una serie de modelos para las 6 muestras de corte transversal de que disponemos.

En concreto, para cada año, se ha procedido a la estimación de un modelo Probit, un Tobit, un Tobit desagregando el tamaño de la familia y un "Selectivity Model". Los resultados de los procesos de estimación se encuentran en los cuadros 5 y siguientes del Apéndice III.

Antes de pasar a comentar los resultados ofrecidos por los cuadros del Apéndice III, se debe realizar un criterio de elección entre los distintos estimadores planteados.

Para ello, recuérdese de secciones anteriores que los estimadores máximoverosimiles que obtenemos para el modelo Tobit son β/σ, y no directamente β como en el caso del modelo Probit.

Siendo esto así, sería de gran interés, comparar directamente los estimadores obtenidos a partir de la estimación de ambos modelos. Recuérdese asimismo, que a través del modelo Probit podemos identificar aquellas variables que se muestran como significativas en la determinación de la probabilidad de que un individuo participe o no el mercado, - en nuestro
contexto, de que el individuo se tome vacaciones positivas o cero en el período de referencia-, mientras que en el modelo Tobit se añade además el proceso de determinación de la cantidad a consumir caso de participar. En estas condiciones, si observamos que los β por ambos modelos difieren ostensiblemente, y además se producen frecuentes cambios de signo, la conclusión lógica sería la de determinar que el modelo Tobit no es un modelo adecuado. En este caso, sería interesante probar alguna especificación alternativa de tipo bivariante a la que ya nos hemos referido.

Sin embargo, si el resultado es el contrario, es decir los parámetros estimados por el Probit y por el Tobit son muy parecidos y además se conservan los signos, la conclusión, debe ser la contraria: el modelo Tobit es el modelo adecuado para la explicación de la variable endógena que estamos manejando.

Además, normalmente el modelo que suponga una mejor especificación debe presentar desviaciones típicas para los parámetros estimados menores.

Como se puede apreciar en las tablas 5 y siguientes, en todos los años la similitud entre las estimaciones de los parámetros provenientes del modelo Probit y las correspondientes al modelos Tobit es muy clara. Además, salvo algunas variables en años determinados la mayoría de los signos de los parámetros se mantienen de un modelo a otro. También se puede comprobar como en todos los casos el modelo Tobit presenta unas desviaciones típicas de los parámetros estimados mucho menores que las que ofrece el modelo Probit.

La conclusión es que el modelo Tobit es el apropiado para la modelización del Gasto en Turismo durante todos estos años.

Además se ha procedido a la construcción de un test de Hausman para discriminar entre el estimador Probit y el Tobit, que nos aporta mayor claridad en este punto. Los resultados se encuentran expuestos en el Cuadro 2.
También se ha realizado la estimación de un "Selectivity Model" cada año, cuyos resultados han confirmado la intuición anterior. En concreto dentro de la especificación de dicho modelo, se han introducido como variables explicativas dentro del proceso dicotómico que determina la probabilidad de tomarse vacaciones positivas en cada período, todas las variables referentes al nivel educativo, de ocupación y demográficas, mientras que en el proceso en donde se determina la cantidad a consumir del bien turismo, se han introducido la renta real y la región de residencia. Como se puede apreciar en los correspondientes cuadros, en todos los casos se obtiene un signo negativo para la variable Renta Real, resultado que viene a reforzar la intuición anterior.

Además puede aplicarse el test propuesto por Greene (1990), y mencionado más arriba, en order a discriminar entre los estimadores Tobit y Doble-Valla. En el Cuadro 2, se exponen los resultados de este contraste. Es fácil comprobar, que, en todos los casos la alternativa Doble-Valla es rechazada frente al Tobit.

A partir de esta estimación analizamos los resultados obtenidos.

La significatividad conjunta del modelo es bastante aceptable. Se establece una relación positiva entre el gasto en turismo y la renta, lo cual parece lógico. La contribución a la probabilidad de esta variable es mayor que la del resto de variables. La región de procedencia no parece ser una variable importante, aunque su inclusión nos evita algún problema de heterocedasticidad que pudiera existir en la muestra debido a la regionalidad de la misma.

El signo negativo de la variable PRIM está de acuerdo con lo que cabría esperar, en el sentido de que un mayor nivel cultural va normalmente unido a un gasto mayor en turismo.

Se observa que desempeñar una profesión relacionada con actividades agrícolas está relacionado negativamente con la probabilidad del gasto en

13 Los resultados de dichas estimaciones se muestran en el Apéndice III, tabla 11.
turismo.

Respecto a la edad y la edad al cuadrado, hay que resaltar el sentido de sus signos -positivo para la edad y negativo para la edad al cuadrado-, lo cual indica que existe un crecimiento proporcional entre el gasto en turismo y la edad hasta un cierto punto, en el cual se estabiliza. Este resultado se mantiene para cada corte trasversal realizado.

Las variables parado y jubilado no son significativas en este estudio y para ningun corte transversal. De hecho, PAR de la que esperábamos un signo negativo presenta signo positivo en varias ocasiones. Podemos esgrimir algunos argumentos que respaldan dichos resultados:

1. la existencia de otros miembros de la unidad familiar, que perciben ingresos, de forma que, aunque el cabeza de familia se encuentre en paro, existen ingresos suficientes para seguir ejerciendo gasto en turismo.

2. es posible que, incluso estando el cabeza de familia parado, éste u otros miembros de la unidad familiar participen en la "economía sumergida".

La variable ASAL1 que representa si el individuo principal de la familia trabaja con carácter fijo tiene una mayor importancia, en términos de probabilidad, sobre el porcentaje de demanda de turismo.

En base a la discusión precedente, hemos llegado a la conclusión de que el modelo Tobit nos proporciona una representación adecuada del proceso que estamos intentando modelizar. Sin embargo, aún no podemos aceptar este modelo tal cual. Recuérdese que en secciones precedentes hemos insistido en la importancia de los supuestos distribucionales en todos estos modelos de los supuestos distribucionales.

Para ello utilizaremos el test de normalidad, al que ya hemos hecho referencia, basado en los residuos generalizados calculados a partir de
nuestras estimaciones. La inspección gráfica de los propios residuos generalizados reveló la no existencia de comportamientos anormales, lo cual puede constituir un indicio de que no se están violando los supuestos distribucionales. Los valores de dicho test vienen referidos en los Cuadros 5 y siguientes, y deben ser comparados con una \(\chi^2 \approx 5.99 \).

Es inmediato comprobar que se acepta la hipótesis nula de normalidad en todos los años, excepto en 1981 y 1982, lo cual podría tener relación con problemas muestrales específicos en alguno de estos años.

Igualmente se ha procedido a la estimación de un modelo Tobit para cada muestra en el que se ha desagregado el tamaño de la familia en tres variables, TF1, TF2, TF3, con el fin de comparar los resultados obtenidos con el modelo sin desagregar. El Cuadro 1 muestra los valores de los parámetros estimados para cada muestra, y del ratio de verosimilitud que nos permite discriminar entre ambas especificaciones.

CUADRO 1
RESULTADOS DE LA DESAGREGACION DE TFAM

<table>
<thead>
<tr>
<th>AÑO</th>
<th>TF1</th>
<th>TF2</th>
<th>TF3</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>-0.0002</td>
<td>0.0079</td>
<td>-0.0027</td>
<td>2.9</td>
</tr>
<tr>
<td>1979</td>
<td>-0.0021</td>
<td>-0.0026</td>
<td>-0.0009</td>
<td>0.1</td>
</tr>
<tr>
<td>1980</td>
<td>-0.0040</td>
<td>0.0050</td>
<td>-0.0046</td>
<td>2.4</td>
</tr>
<tr>
<td>1981</td>
<td>-0.0002</td>
<td>-0.0045</td>
<td>-0.0130</td>
<td>0.3</td>
</tr>
<tr>
<td>1982</td>
<td>-0.0049</td>
<td>0.0037</td>
<td>0.0094</td>
<td>2.8</td>
</tr>
<tr>
<td>1983</td>
<td>-0.0038</td>
<td>-0.0014</td>
<td>-0.0130</td>
<td>2.7</td>
</tr>
</tbody>
</table>

NOTA: LR muestra el valor del ratio de verosimilitud.

Como se puede apreciar, en ningún caso la diferencia entre los valores del logaritmo de la función de verosimilitud entre ambos modelos es lo suficientemente grande en favor del modelo desagregado como para aceptarlo contra el modelo restringido. De acuerdo con los resultados del test ratio de
verosimilitud nos quedaremos con el modelo en donde el tamaño de la familia no ha sido desagregado.

A continuación el Cuadro 2 refleja los resultados de los distintos contrastes de especificación anteriormente citados, los cuales, en todos los casos analizados, reflejan la superioridad del modelo Tobit frente a otro tipo de alternativas.

CUADRO 2
CONTRASTES DE ESPECIFICACION

<table>
<thead>
<tr>
<th>AÑO</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>713.1</td>
<td>32447</td>
</tr>
<tr>
<td>1979</td>
<td>642.3</td>
<td>46469</td>
</tr>
<tr>
<td>1980</td>
<td>723.7</td>
<td>45418</td>
</tr>
<tr>
<td>1981</td>
<td>650.6</td>
<td>45282</td>
</tr>
<tr>
<td>1982</td>
<td>632.3</td>
<td>45215</td>
</tr>
<tr>
<td>1983</td>
<td>652.4</td>
<td>40296</td>
</tr>
</tbody>
</table>

T1: Valor test propuesto por Greene (1990).
T2: Valor del test de Hausman entre Tobit y Probit.
En todos los casos el valor crítico es 4.033 salvo para el año 1978 que es de 40.11.

4.4.- Estimación de las elasticidades.

Presentamos en el Cuadro 3 los resultados obtenidos para la elasticidad renta y la propensión marginal al consumo de turismo, basadas en los estimadores Tobit, y de acuerdo con las ecuaciones [15] y [16] referidas más arriba.

Obtenemos, cada año, elasticidades renta por encima de la unidad, lo cual muestra el carácter de elásticas de las curvas de Engle para este bien, y de bien de lujo para el turismo. La propensión marginal muestra valores muy
razonables, que reflejan la importancia de este bien dentro del gasto total de los consumidores españoles.

Tanto la elasticidad como la propensión marginal al consumo, crecen a lo largo de los diferentes años, y merece la pena resaltar los elevados valores de ambas variables para el año 1982, sin transfondo económico aparente. Este hecho, probablemente esté revelando la existencia de algún problema específico en la muestra para este año.

CUADRO 3

ELASTICIDAD RENTA Y PROPENSION MARGINAL AL CONSUMO DEL BIEN TURISMO (EN LAS MEEDIAS)*

<table>
<thead>
<tr>
<th>Año</th>
<th>Ex</th>
<th>P.M.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>2.066</td>
<td>0.0406</td>
</tr>
<tr>
<td>1979</td>
<td>2.523</td>
<td>0.0529</td>
</tr>
<tr>
<td>1980</td>
<td>2.027</td>
<td>0.0591</td>
</tr>
<tr>
<td>1981</td>
<td>2.235</td>
<td>0.0578</td>
</tr>
<tr>
<td>1982</td>
<td>3.183</td>
<td>0.0830</td>
</tr>
<tr>
<td>1983</td>
<td>2.584</td>
<td>0.0680</td>
</tr>
</tbody>
</table>

*medida en la media del share de turismo.
5.- CONCLUSIONES.

El estudio a través de las muestras *cross-section*, nos ha facilitado un
conocimiento de las distintas relaciones existentes entre la demanda de
turismo con todas las variables socioeconómicas estudiadas, permitiéndonos
obtener unas estimaciones de la elasticidad renta y propensión marginal al
consumo de turismo. El análisis *cross-section* resulta de gran interés para el
estudio de este tipo de modelos porque nos permite un análisis estructural
detallado de la composición del gasto en turismo en cada período.

Se puede apreciar asimismo si se producen cambios de importancia en la
estructura del modelo año a año.

Este tipo de modelos superan ampliamente el tratamiento que
tradicionalmente se le ha dado a la demanda turística, centrándose en datos de
serie temporal, ya que desde este tipo de modelización es posible determinar
los elementos básicos que condicionan la decisión de demandar turismo, a la
vez que integrar la propia demanda de turismo dentro de un modelo más general
de elección renta-ocio. Igualmente este modelo nos permite obtener
estimaciones de la elasticidad renta media del período, así como de la
propensión marginal al consumo de turismo, lo que resulta muy interesante de
cara a la toma de decisiones.

Este trabajo debe ser continuado con el análisis del panel lo cual nos
proporcionará la ventaja adicional de conocer la evolución del porcentaje de
gasto en turismo a través del tiempo, e igualmente nos puede proporcionar un
posible esquema dinámico para el modelo AIDS al permitirnos la inclusión de
variables retardadas, que nos permitan recoger los efectos de los precios en
el período t, sobre la decisión de la demanda de turismo en períodos
posteriores, ya que éste es uno de los principales inconvenientes del modelo
hemos planteado.
APENDICE I.

CUADRO 4
INDICES DE PRECIOS DEL TURISMO Y AL CONSUMO

<table>
<thead>
<tr>
<th>AÑO</th>
<th>IPT</th>
<th>IPC</th>
<th>STONE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>3.809768</td>
<td>3.919991</td>
<td>3.919384</td>
</tr>
<tr>
<td>1979</td>
<td>3.993971</td>
<td>4.065602</td>
<td>4.065222</td>
</tr>
<tr>
<td>1980</td>
<td>4.153085</td>
<td>4.210645</td>
<td>4.210224</td>
</tr>
<tr>
<td>1981</td>
<td>4.297829</td>
<td>4.346399</td>
<td>4.346088</td>
</tr>
<tr>
<td>1982</td>
<td>4.460375</td>
<td>4.480740</td>
<td>4.480619</td>
</tr>
<tr>
<td>1983</td>
<td>4.605570</td>
<td>4.596129</td>
<td>4.596189</td>
</tr>
</tbody>
</table>

*en las medias.

APENDICE II: Descripción de las variables.

* Renta real (LINGR)

LINGR (para cada individuo) = la diferencia entre el logaritmo neperiano del gasto total\(^{14}\) y el índice de precios de Stone.

\(^{14}\)Como en la mayoría de este tipo de estudios se ha procedido a aproximar la renta total del individuo por el gasto total.

Otra razón de peso para utilizar esta aproximación, es el hecho de que los datos sobre gastos son mucho más fidedignos que los datos referentes a ingresos. Esta razón es normal en este tipo de estudios.
* Región de residencia (R)

R1: Madrid
R2: Barcelona
R3: Logroño, Zaragoza, Huesca, Lérida, Tarragona y Gerona.
R4: Alava, Guipúzcoa, Navarra, Santander y Vizcaya.
R5: La Coruña, Pontevedra y Oviedo.
R6: Lugo, Orense y Zamora.
R7: Alicante, Baleares y Valencia.
R8: Burgos, León, Palencia, Soria y Valladolid.
R9: Badajoz, Cáceres y Salamanca.
R10: Avila, Ciudad Real, Cuenca, Guadalajara, Segovia, Toledo, Teruel y Castellón.
R11: Murcia y Albacete.
R12: Cádiz, Córdoba, Huelva, Sevilla y Málaga.
R13: Jaén, Granada y Almería.
R14: Las Palmas y Sta.Cruz.

Para nuestro estudio se han construido cada año 14 variables dummy, de la R1 a la R14, que toman el valor 1 si el individuo en cuestión pertenece a dicha región y 0 si no es así. En todas las estimaciones se ha excluido la R13 para evitar problemas de multicolinealidad15.

15Se ha elegido precisamente esta región porque, como puede apreciarse en los cuadros de estadísticos descriptivos de las variables, en varios años para la muestra con observaciones positivas, esta variable presenta valor cero, es decir, no hay ningún individuo perteneciente a dicha región que refleje gasto alguno en turismo. En el caso concreto de 1978 también se excluyó R14 pues ocurriría lo mismo que con R13.
* Nivel de educación

PRIM = 1 si el individuo es analfabeto, no acabó sus estudios primarios o alcanzó como máximo a finalizar la EGB, y 0 en otro caso.

MED = 1 si el nivel de estudios del individuo es un nivel medio (BUP o Formación Profesional), 0 en otro caso.

SUP = 1 individuos con carreras medias o superiores y 0 en otro caso.

Una vez más, y para evitar problemas de multicolinealidad perfecta entre los regresores se ha excluido en todas las estimaciones la variable MED.

* Variables referentes a la ocupación

PAR = 1 si el sustentador principal está parado y 0 en otro caso.

JUB = 1 si éste es jubilado y 0 si no es así.

EMPLEA = 1 si el sustentador principal es patrono, empresario o profesional que emplea personal, o empresario o profesional que no emplea personal o trabajador por cuenta propia, y 0 en otro caso.

ASAL1 = 1 si el individuo trabaja a sueldo, jornal o comisión u otra clase cualquiera de remuneración, con carácter fijo, 0 en otro caso.

ASAL2 = 1 si el sustentador trabaja a sueldo, jornal, comisión u otra clase cualquiera de remuneración, con carácter eventual o interino.

AGRAR = 1 si la rama de actividad del sustentador principal es agraria y 0 si es no agraria.
CBLA = 1 si el sustentador principal ejerce una actividad de "cuello blanco", es decir si ejerce una profesión no manual, y 0 en caso contrario.

* Variables demográficas

TFAM, refleja el número de individuos que componen la unidad familiar.

TF1 recoje el número de individuos de la unidad familiar menores de 20 años.

TF2 el número de individuos entre 20 y 60 años. TF3 recoje el número de individuos pertenecientes a la unidad familiar con más de 60 años.

EDAD refleja la edad del sustentador principal, mientras EDAD2 la edad al cuadrado del mismo, para observar si se producen comportamientos de tipo no lineal con respecto a esta variable.

SX = 1 si el sustentador principal es varón y 0 si es mujer.
APENDICE III: Resultados de la estimación.

CUADRO 5
RESULTADOS DE LA ESTIMACION 1978

<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-14.47</td>
<td>-0.46</td>
<td>-0.015</td>
<td>Prim</td>
<td>-0.207</td>
<td>-0.0017</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.185)</td>
<td></td>
<td>(0.344)</td>
<td>(0.011)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Lingr</td>
<td>0.674</td>
<td>0.021</td>
<td>0.002</td>
<td>Sup</td>
<td>0.270</td>
<td>0.015</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.006)</td>
<td>(0.015)</td>
<td></td>
<td>(0.553)</td>
<td>(0.016)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>R 1</td>
<td>5.074</td>
<td>0.172</td>
<td>0.0007</td>
<td>Par</td>
<td>0.023</td>
<td>-0.144</td>
<td>-0.0045</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.019)</td>
<td></td>
<td>(0.752)</td>
<td>(0.027)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>R 2</td>
<td>5.743</td>
<td>0.202</td>
<td>0.0053</td>
<td>Jub</td>
<td>0.120</td>
<td>0.0066</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.102)</td>
<td></td>
<td>(0.780)</td>
<td>(0.027)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>R 3</td>
<td>3.714</td>
<td>0.201</td>
<td>0.0055</td>
<td>Emplea</td>
<td>-0.135</td>
<td>0.0057</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.107)</td>
<td></td>
<td>(0.780)</td>
<td>(0.027)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>R 4</td>
<td>5.568</td>
<td>0.196</td>
<td>0.0021</td>
<td>Asal 1</td>
<td>0.206</td>
<td>0.0162</td>
<td>0.0022</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.023)</td>
<td></td>
<td>(0.764)</td>
<td>(0.026)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>R 5</td>
<td>4.694</td>
<td>0.173</td>
<td>0.0018</td>
<td>Asal 2</td>
<td>-0.224</td>
<td>0.0103</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.019)</td>
<td></td>
<td>(0.845)</td>
<td>(0.029)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>R 6</td>
<td>4.199</td>
<td>0.144</td>
<td>-0.0024</td>
<td>Agrar</td>
<td>0.082</td>
<td>-0.0017</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.107)</td>
<td></td>
<td>(0.273)</td>
<td>(0.009)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>R 7</td>
<td>5.185</td>
<td>0.179</td>
<td>0.0006</td>
<td>Cbla</td>
<td>0.106</td>
<td>0.0017</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.016)</td>
<td></td>
<td>(0.225)</td>
<td>(0.007)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>R 8</td>
<td>4.971</td>
<td>0.176</td>
<td>0.0029</td>
<td>Tfam</td>
<td>0.082</td>
<td>0.0015</td>
<td>0.5E-5</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.022)</td>
<td></td>
<td>(0.059)</td>
<td>(0.002)</td>
<td>(0.2E-4)</td>
</tr>
<tr>
<td>R 9</td>
<td>5.207</td>
<td>0.182</td>
<td>0.0029</td>
<td>Edad</td>
<td>0.083</td>
<td>0.0013</td>
<td>-0.00007</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.017)</td>
<td></td>
<td>(0.053)</td>
<td>(0.001)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>R 10</td>
<td>5.212</td>
<td>0.192</td>
<td>0.0033</td>
<td>Edad 2</td>
<td>-0.0007</td>
<td>-0.00001</td>
<td>0.9E-6</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.023)</td>
<td></td>
<td>(0.5E-3)</td>
<td>(0.1E-4)</td>
<td>(0.1E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>5.842</td>
<td>0.193</td>
<td>0.0019</td>
<td>Sx</td>
<td>0.205</td>
<td>-0.00012</td>
<td>0.00033</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.020)</td>
<td></td>
<td>(0.336)</td>
<td>(0.011)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>R 12</td>
<td>5.449</td>
<td>0.198</td>
<td>0.0019</td>
<td>σ</td>
<td>—</td>
<td>0.0372</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(278.4)</td>
<td>(10.45)</td>
<td>(0.023)</td>
<td></td>
<td>—</td>
<td>(0.002)</td>
<td>—</td>
</tr>
<tr>
<td>R 14</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Log</td>
<td>-175.04</td>
<td>-110.53</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Het</td>
<td>(4)</td>
<td>4.646</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Normal</td>
<td>(2)</td>
<td>1.003</td>
<td>—</td>
</tr>
</tbody>
</table>

Notas:
- a. Desviaciones típicas entre paréntesis
- b. Variable endógena Tobit: Gtur
- c. Variable endógena Probit: X 1
- d. Het muestra el valor de un estadístico basado en los residuos generalizados para contrastar la heteroscedasticidad causada por variables no discretas.
CUADRO 6
RESULTADOS DE LA ESTIMACIÓN 1979

<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-17.01</td>
<td>-0.633</td>
<td>-0.07298</td>
<td>Prim</td>
<td>0.24</td>
<td>0.007</td>
<td>0.00051</td>
</tr>
<tr>
<td></td>
<td>(429.7)</td>
<td>(16.73)</td>
<td>(0.5479)</td>
<td></td>
<td>(0.343)</td>
<td>(0.012)</td>
<td>(0.0352)</td>
</tr>
<tr>
<td>Lingr</td>
<td>0.95</td>
<td>0.032</td>
<td>0.00523</td>
<td>Sup</td>
<td>0.52</td>
<td>0.019</td>
<td>0.00203</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.007)</td>
<td>(0.0332)</td>
<td></td>
<td>(0.530)</td>
<td>(0.017)</td>
<td>(0.0743)</td>
</tr>
<tr>
<td>R 1</td>
<td>4.87</td>
<td>0.185</td>
<td>0.00234</td>
<td>Par</td>
<td>1.03</td>
<td>0.043</td>
<td>0.00391</td>
</tr>
<tr>
<td></td>
<td>(429.7)</td>
<td>(16.73)</td>
<td>(0.0704)</td>
<td></td>
<td>(0.576)</td>
<td>(0.020)</td>
<td>(0.0782)</td>
</tr>
<tr>
<td>R 2</td>
<td>6.22</td>
<td>0.228</td>
<td>0.01111</td>
<td>Jub</td>
<td>1.03</td>
<td>0.046</td>
<td>0.00326</td>
</tr>
<tr>
<td></td>
<td>(429.7)</td>
<td>(16.73)</td>
<td>(0.0821)</td>
<td></td>
<td>(0.764)</td>
<td>(0.030)</td>
<td>(0.0450)</td>
</tr>
<tr>
<td>R 3</td>
<td>6.002</td>
<td>0.213</td>
<td>0.00645</td>
<td>Emplea</td>
<td>0.94</td>
<td>0.039</td>
<td>0.00497</td>
</tr>
<tr>
<td></td>
<td>(429.7)</td>
<td>(16.73)</td>
<td>(0.0743)</td>
<td></td>
<td>(0.762)</td>
<td>(0.030)</td>
<td>(0.0469)</td>
</tr>
<tr>
<td>R 4</td>
<td>5.81</td>
<td>0.214</td>
<td>0.00629</td>
<td>Asal 1</td>
<td>0.92</td>
<td>0.044</td>
<td>0.00443</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0763)</td>
<td></td>
<td>(0.728)</td>
<td>(0.029)</td>
<td>(0.0450)</td>
</tr>
<tr>
<td>R 5</td>
<td>4.28</td>
<td>0.159</td>
<td>0.00311</td>
<td>Asal 2</td>
<td>0.59</td>
<td>0.035</td>
<td>0.00646</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0704)</td>
<td></td>
<td>(0.787)</td>
<td>(0.030)</td>
<td>(0.0724)</td>
</tr>
<tr>
<td>R 6</td>
<td>4.73</td>
<td>0.176</td>
<td>-0.00032</td>
<td>Agrar</td>
<td>−0.28</td>
<td>−0.005</td>
<td>−0.0015</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0841)</td>
<td></td>
<td>(0.285)</td>
<td>(0.010)</td>
<td>(0.0313)</td>
</tr>
<tr>
<td>R 7</td>
<td>5.08</td>
<td>0.187</td>
<td>0.00259</td>
<td>Cbla</td>
<td>0.07</td>
<td>0.006</td>
<td>0.00303</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0665)</td>
<td></td>
<td>(0.240)</td>
<td>(0.008)</td>
<td>(0.0273)</td>
</tr>
<tr>
<td>R 8</td>
<td>5.44</td>
<td>0.196</td>
<td>0.0059</td>
<td>Tfam</td>
<td>−0.039</td>
<td>−0.002</td>
<td>−0.00074</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0743)</td>
<td></td>
<td>(0.063)</td>
<td>(0.002)</td>
<td>(0.0070)</td>
</tr>
<tr>
<td>R 9</td>
<td>5.17</td>
<td>0.188</td>
<td>0.00354</td>
<td>Edad</td>
<td>0.049</td>
<td>0.002</td>
<td>0.00063</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0704)</td>
<td></td>
<td>(0.052)</td>
<td>(0.019)</td>
<td>(0.00900)</td>
</tr>
<tr>
<td>R 10</td>
<td>5.18</td>
<td>0.202</td>
<td>0.0066</td>
<td>Edad 2</td>
<td>−0.0004</td>
<td>−0.00001</td>
<td>−0.5E-5</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0763)</td>
<td></td>
<td>(0.5E-3)</td>
<td>(0.1E-4)</td>
<td>(0.3E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>4.71</td>
<td>0.171</td>
<td>0.00165</td>
<td>Sx</td>
<td>0.074</td>
<td>0.004</td>
<td>0.00025</td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0684)</td>
<td></td>
<td>(0.331)</td>
<td>(0.012)</td>
<td>(0.0016)</td>
</tr>
<tr>
<td>R 12</td>
<td>5.02</td>
<td>0.196</td>
<td>0.00572</td>
<td>σ</td>
<td>—</td>
<td>0.0386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0841)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 14</td>
<td>4.72</td>
<td>0.166</td>
<td>0.00227</td>
<td>Log</td>
<td>−158.34</td>
<td>−95.535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(429.4)</td>
<td>(16.73)</td>
<td>(0.0741)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hет</td>
<td>(4)</td>
<td>1.083</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Нормальность</td>
<td>(2)</td>
<td>2.169</td>
<td></td>
</tr>
</tbody>
</table>

Notas:
a. Desviaciones típicas entre paréntesis
b. Variable endógena Tobit: Gttr
c. Variable endógena Probit: X1
d. Het muestra el valor de un estadístico basado en los residuos generalizados para contrastar la heteroscedasticidad causada por variables explicativas no discretas.
CUADRO 7
RESULTADOS DE LA ESTIMACION 1980

<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-9.316</td>
<td>-0.5</td>
<td>-0.10698</td>
<td>Prim</td>
<td>0.025</td>
<td>0.005</td>
<td>-0.00169</td>
</tr>
<tr>
<td></td>
<td>(2.179)</td>
<td>(0.119)</td>
<td>(0.4751)</td>
<td>Sup</td>
<td>0.097</td>
<td>0.02</td>
<td>0.00626</td>
</tr>
<tr>
<td>Lingr</td>
<td>0.650</td>
<td>0.03</td>
<td>0.00856</td>
<td>R 1</td>
<td>0.344</td>
<td>0.02</td>
<td>0.00173</td>
</tr>
<tr>
<td></td>
<td>(0.190)</td>
<td>(0.010)</td>
<td>(0.0475)</td>
<td></td>
<td>(0.682)</td>
<td>(0.037)</td>
<td>(0.0435)</td>
</tr>
<tr>
<td>R 2</td>
<td>1.603</td>
<td>0.07</td>
<td>0.01264</td>
<td></td>
<td>-0.462</td>
<td>-0.02</td>
<td>-0.0038</td>
</tr>
<tr>
<td></td>
<td>(0.555)</td>
<td>(0.030)</td>
<td>(0.0475)</td>
<td></td>
<td>(0.555)</td>
<td>(0.029)</td>
<td>(0.0870)</td>
</tr>
<tr>
<td>R 3</td>
<td>1.009</td>
<td>0.05</td>
<td>-0.00483</td>
<td></td>
<td>-0.272</td>
<td>-0.02</td>
<td>0.0047</td>
</tr>
<tr>
<td></td>
<td>(0.562)</td>
<td>(0.030)</td>
<td>(0.0910)</td>
<td></td>
<td>(0.588)</td>
<td>(0.032)</td>
<td>(0.0870)</td>
</tr>
<tr>
<td>R 4</td>
<td>1.126</td>
<td>0.06</td>
<td>0.00938</td>
<td>Asal 1</td>
<td>0.169</td>
<td>-0.01</td>
<td>0.00088</td>
</tr>
<tr>
<td></td>
<td>(0.591)</td>
<td>(0.032)</td>
<td>(0.0475)</td>
<td></td>
<td>(0.558)</td>
<td>(0.029)</td>
<td>(0.0770)</td>
</tr>
<tr>
<td>R 5</td>
<td>0.414</td>
<td>0.02</td>
<td>0.00017</td>
<td>Asal 2</td>
<td>-0.369</td>
<td>-0.02</td>
<td>0.01231</td>
</tr>
<tr>
<td></td>
<td>(0.611)</td>
<td>(0.033)</td>
<td>(0.0752)</td>
<td></td>
<td>(0.655)</td>
<td>(0.035)</td>
<td>(0.0750)</td>
</tr>
<tr>
<td>R 6</td>
<td>0.151</td>
<td>0.01</td>
<td>-0.0109</td>
<td>Agrar</td>
<td>0.108</td>
<td>0.009</td>
<td>-0.00004</td>
</tr>
<tr>
<td></td>
<td>(0.642)</td>
<td>(0.034)</td>
<td>(0.1009)</td>
<td></td>
<td>(0.266)</td>
<td>(0.014)</td>
<td>(0.0370)</td>
</tr>
<tr>
<td>R 7</td>
<td>0.867</td>
<td>0.04</td>
<td>0.00179</td>
<td>Cbla</td>
<td>0.250</td>
<td>0.01</td>
<td>0.00831</td>
</tr>
<tr>
<td></td>
<td>(0.541)</td>
<td>(0.029)</td>
<td>(0.0490)</td>
<td></td>
<td>(0.232)</td>
<td>(0.012)</td>
<td>(0.0390)</td>
</tr>
<tr>
<td>R 8</td>
<td>0.934</td>
<td>0.04</td>
<td>0.00325</td>
<td>Tfam</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.0011</td>
</tr>
<tr>
<td></td>
<td>(0.578)</td>
<td>(0.032)</td>
<td>(0.0770)</td>
<td></td>
<td>(0.059)</td>
<td>(0.003)</td>
<td>(0.0110)</td>
</tr>
<tr>
<td>R 9</td>
<td>0.219</td>
<td>0.005</td>
<td>0.000117</td>
<td>Edad</td>
<td>0.070</td>
<td>0.004</td>
<td>0.00057</td>
</tr>
<tr>
<td></td>
<td>(0.618)</td>
<td>(0.034)</td>
<td></td>
<td></td>
<td>(0.047)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>R 10</td>
<td>0.703</td>
<td>0.04</td>
<td>0.0028</td>
<td>Edad 2</td>
<td>-0.0006</td>
<td>-0.0000</td>
<td>-0.5E-5</td>
</tr>
<tr>
<td></td>
<td>(0.569)</td>
<td>(0.031)</td>
<td>(0.053)</td>
<td></td>
<td>(0.4E-3)</td>
<td>(0.2E-4)</td>
<td>(0.3E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>-0.032</td>
<td>-0.0001</td>
<td>-0.00146</td>
<td>Sx</td>
<td>0.233</td>
<td>0.01</td>
<td>0.00689</td>
</tr>
<tr>
<td></td>
<td>(0.730)</td>
<td>(0.040)</td>
<td>(0.0510)</td>
<td></td>
<td>(0.323)</td>
<td>(0.002)</td>
<td>(0.0410)</td>
</tr>
<tr>
<td>R 12</td>
<td>1.074</td>
<td>0.06</td>
<td>0.01293</td>
<td>σ</td>
<td>—</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.659)</td>
<td>(0.035)</td>
<td>(0.0630)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>R 14</td>
<td>0.572</td>
<td>0.03</td>
<td>0.00392</td>
<td>Log</td>
<td>-178.72</td>
<td>-46.945</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.675)</td>
<td>(0.036)</td>
<td>(0.0430)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notas:

a. Desviaciones típicas entre paréntesis
b. Variable endógena Tobit: Gtur
c. Variable endógena Probit: X 1
d. Het muestra el valor de un estadístico basado en los residuos generalizados para contrastar la heteroscedasticidad causada por variables explicativas no discretas.
CUADRO 8
RESULTADOS DE LA ESTIMACION 1981

<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-11.596</td>
<td>-0.466</td>
<td>-0.11346</td>
<td>Prim</td>
<td>0.219</td>
<td>-0.004</td>
<td>-0.00522</td>
</tr>
<tr>
<td></td>
<td>(2.567)</td>
<td>(0.112)</td>
<td>(0.4516)</td>
<td></td>
<td>(0.346)</td>
<td>(0.013)</td>
<td>(0.0603)</td>
</tr>
<tr>
<td>Lingr</td>
<td>0.929</td>
<td>0.032</td>
<td>0.00738</td>
<td>Sup</td>
<td>0.680</td>
<td>-0.002</td>
<td>-0.00164</td>
</tr>
<tr>
<td></td>
<td>(0.210)</td>
<td>(0.008)</td>
<td>(0.0438)</td>
<td></td>
<td>(0.597)</td>
<td>(0.021)</td>
<td>(0.0876)</td>
</tr>
<tr>
<td>R 1</td>
<td>1.117</td>
<td>0.068</td>
<td>0.01098</td>
<td>Par</td>
<td>0.987</td>
<td>0.041</td>
<td>-0.00593</td>
</tr>
<tr>
<td></td>
<td>(0.762)</td>
<td>(0.034)</td>
<td>(0.0876)</td>
<td></td>
<td>(0.525)</td>
<td>(0.023)</td>
<td>(0.0525)</td>
</tr>
<tr>
<td>R 2</td>
<td>1.874</td>
<td>0.085</td>
<td>0.01363</td>
<td>Jubb</td>
<td>-0.061</td>
<td>0.013</td>
<td>-0.00365</td>
</tr>
<tr>
<td></td>
<td>(0.692)</td>
<td>(0.031)</td>
<td>(0.0720)</td>
<td></td>
<td>(0.599)</td>
<td>(0.026)</td>
<td>(0.0020)</td>
</tr>
<tr>
<td>R 3</td>
<td>1.437</td>
<td>0.061</td>
<td>0.00408</td>
<td>Emplea</td>
<td>0.235</td>
<td>0.019</td>
<td>0.00253</td>
</tr>
<tr>
<td></td>
<td>(0.689)</td>
<td>(0.031)</td>
<td>(0.0778)</td>
<td></td>
<td>(0.604)</td>
<td>(0.026)</td>
<td>(0.0564)</td>
</tr>
<tr>
<td>R 4</td>
<td>1.398</td>
<td>0.057</td>
<td>0.00481</td>
<td>Asal 1</td>
<td>0.199</td>
<td>0.016</td>
<td>0.00039</td>
</tr>
<tr>
<td></td>
<td>(0.716)</td>
<td>(0.033)</td>
<td>(0.0389)</td>
<td></td>
<td>(0.570)</td>
<td>(0.024)</td>
<td>(0.0311)</td>
</tr>
<tr>
<td>R 5</td>
<td>0.126</td>
<td>0.019</td>
<td>0.00379</td>
<td>Asal 2</td>
<td>0.477</td>
<td>0.032</td>
<td>0.01008</td>
</tr>
<tr>
<td></td>
<td>(0.814)</td>
<td>(0.036)</td>
<td>(0.0564)</td>
<td></td>
<td>(0.660)</td>
<td>(0.028)</td>
<td>(0.0603)</td>
</tr>
<tr>
<td>R 6</td>
<td>0.853</td>
<td>0.036</td>
<td>0.00214</td>
<td>Agrar</td>
<td>0.153</td>
<td>0.002</td>
<td>-0.00385</td>
</tr>
<tr>
<td></td>
<td>(0.733)</td>
<td>(0.034)</td>
<td>(0.0720)</td>
<td></td>
<td>(0.272)</td>
<td>(0.011)</td>
<td>(0.0603)</td>
</tr>
<tr>
<td>R 7</td>
<td>0.714</td>
<td>0.035</td>
<td>0.00110</td>
<td>Cbla</td>
<td>0.398</td>
<td>0.011</td>
<td>0.00118</td>
</tr>
<tr>
<td></td>
<td>(0.677)</td>
<td>(0.032)</td>
<td>(0.0584)</td>
<td></td>
<td>(0.237)</td>
<td>(0.009)</td>
<td>(0.0389)</td>
</tr>
<tr>
<td>R 8</td>
<td>0.757</td>
<td>0.039</td>
<td>0.00511</td>
<td>Tfarm</td>
<td>-0.035</td>
<td>-0.001</td>
<td>-0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.727)</td>
<td>(0.033)</td>
<td>(0.0467)</td>
<td></td>
<td>(0.062)</td>
<td>(0.003)</td>
<td>(0.0109)</td>
</tr>
<tr>
<td>R 9</td>
<td>1.114</td>
<td>0.049</td>
<td>0.00715</td>
<td>Edad</td>
<td>0.050</td>
<td>0.003</td>
<td>0.00147</td>
</tr>
<tr>
<td></td>
<td>(0.696)</td>
<td>(0.032)</td>
<td>(0.0642)</td>
<td></td>
<td>(0.058)</td>
<td>(0.002)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>R 10</td>
<td>1.226</td>
<td>0.061</td>
<td>0.01384</td>
<td>Edad 2</td>
<td>-0.0005</td>
<td>-0.3E-4</td>
<td>-0.13E-4</td>
</tr>
<tr>
<td></td>
<td>(0.698)</td>
<td>(0.032)</td>
<td>(0.0642)</td>
<td></td>
<td>(0.5E-3)</td>
<td>(0.2E-4)</td>
<td>(0.7E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>0.628</td>
<td>0.034</td>
<td>-0.00506</td>
<td>Sx</td>
<td>-0.187</td>
<td>-0.014</td>
<td>-0.00055</td>
</tr>
<tr>
<td></td>
<td>(0.779)</td>
<td>(0.035)</td>
<td>(0.0759)</td>
<td></td>
<td>(0.328)</td>
<td>(0.013)</td>
<td>(0.0467)</td>
</tr>
<tr>
<td>R 12</td>
<td>1.272</td>
<td>0.065</td>
<td>0.01495</td>
<td>σ</td>
<td></td>
<td>0.0450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.732)</td>
<td>(0.033)</td>
<td>(0.0700)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>R 14</td>
<td>0.270</td>
<td>0.022</td>
<td>0.00462</td>
<td>Log</td>
<td>-164.88</td>
<td>-69.483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.889)</td>
<td>(0.038)</td>
<td>(0.0389)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hет</td>
<td>(4)</td>
<td>2.157</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normality</td>
<td>(2)</td>
<td>6.035</td>
<td></td>
</tr>
</tbody>
</table>

Notas:
a. Desviaciones típicas entre paréntesis
b. Variable endógena Tobit: Gtur
c. Variable endógena Probit: X 1
d. Hет muestra el valor de un estadístico basado en los residuos generalizados para contrastar la heteroscedasticidad causada por variables explicativas no discretas.
CUADRO 9

RESULTADOS DE LA ESTIMACIÓN 1982

<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-19.891</td>
<td>-0.875</td>
<td>-0.1469</td>
<td>Prim</td>
<td>0.266</td>
<td>-0.006</td>
<td>-0.00459</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.7202)</td>
<td></td>
<td>(0.333)</td>
<td>(0.015)</td>
<td>(0.0567)</td>
</tr>
<tr>
<td>Lingr</td>
<td>1.468</td>
<td>0.058</td>
<td>0.01076</td>
<td>Sup</td>
<td>-0.073</td>
<td>-0.008</td>
<td>0.00632</td>
</tr>
<tr>
<td></td>
<td>(0.249)</td>
<td>(0.011)</td>
<td>(0.0547)</td>
<td></td>
<td>(0.556)</td>
<td>(0.023)</td>
<td>(0.0802)</td>
</tr>
<tr>
<td>R 1</td>
<td>6.136</td>
<td>0.305</td>
<td>0.0307</td>
<td>Par</td>
<td>0.489</td>
<td>0.017</td>
<td>0.00705</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.1644)</td>
<td></td>
<td>(0.644)</td>
<td>(0.027)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>R 2</td>
<td>6.469</td>
<td>0.288</td>
<td>0.01364</td>
<td>Jüb</td>
<td>-0.229</td>
<td>-0.026</td>
<td>0.01283</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0626)</td>
<td></td>
<td>(0.765)</td>
<td>(0.034)</td>
<td>(0.1272)</td>
</tr>
<tr>
<td>R 3</td>
<td>6.015</td>
<td>0.271</td>
<td>0.01271</td>
<td>Emplea</td>
<td>-0.654</td>
<td>0.063</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.08622)</td>
<td></td>
<td>(0.778)</td>
<td>(0.035)</td>
<td>(0.1624)</td>
</tr>
<tr>
<td>R 4</td>
<td>6.121</td>
<td>0.288</td>
<td>0.0236</td>
<td>Asal 1</td>
<td>-0.490</td>
<td>-0.048</td>
<td>-0.0158</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.1096)</td>
<td></td>
<td>(0.738)</td>
<td>(0.033)</td>
<td>(0.1300)</td>
</tr>
<tr>
<td>R 5</td>
<td>4.797</td>
<td>0.219</td>
<td>0.0087</td>
<td>Asal 2</td>
<td>-0.950</td>
<td>-0.077</td>
<td>-0.0304</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0668)</td>
<td></td>
<td>(0.857)</td>
<td>(0.038)</td>
<td>(0.2152)</td>
</tr>
<tr>
<td>R 6</td>
<td>5.276</td>
<td>0.251</td>
<td>0.0106</td>
<td>Agrar</td>
<td>0.022</td>
<td>0.018</td>
<td>0.0142</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0665)</td>
<td></td>
<td>(0.318)</td>
<td>(0.014)</td>
<td>(0.0978)</td>
</tr>
<tr>
<td>R 7</td>
<td>5.716</td>
<td>0.267</td>
<td>0.0145</td>
<td>Cbla</td>
<td>0.124</td>
<td>0.007</td>
<td>0.0109</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0626)</td>
<td></td>
<td>(0.259)</td>
<td>(0.012)</td>
<td>(0.0841)</td>
</tr>
<tr>
<td>R 8</td>
<td>4.956</td>
<td>0.231</td>
<td>0.0183</td>
<td>Tlam</td>
<td>-0.038</td>
<td>-0.001</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0645)</td>
<td></td>
<td>(0.067)</td>
<td>(0.003)</td>
<td>(0.0009)</td>
</tr>
<tr>
<td>R 9</td>
<td>5.805</td>
<td>0.267</td>
<td>0.0114</td>
<td>Edad</td>
<td>0.0009</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.063)</td>
<td></td>
<td>(0.062)</td>
<td>(0.003)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>R 10</td>
<td>5.845</td>
<td>0.281</td>
<td>0.0175</td>
<td>Edad 2</td>
<td>-0.0009</td>
<td>-0.0002</td>
<td>-0.8E-5</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0547)</td>
<td></td>
<td>(0.5E-3)</td>
<td>(0.2E-4)</td>
<td>(0.2E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>5.657</td>
<td>0.260</td>
<td>0.0115</td>
<td>Sx</td>
<td>0.600</td>
<td>0.031</td>
<td>0.0157</td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.0724)</td>
<td></td>
<td>(0.405)</td>
<td>(0.019)</td>
<td>(0.0978)</td>
</tr>
<tr>
<td>R 12</td>
<td>5.409</td>
<td>0.295</td>
<td>0.0239</td>
<td>σ</td>
<td>—</td>
<td>0.05030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td>(0.1117)</td>
<td></td>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 14</td>
<td>5.977</td>
<td>0.284</td>
<td>0.0160</td>
<td>Log</td>
<td>-144.2</td>
<td>-58.525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(361.9)</td>
<td>(18.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notas:

a. Desviaciones típicas entre paréntesis
b. Variable endógena Tobit: Citur
c. Variable endógena Probit: X 1
d. Het muestra el valor de un estadístico basado en los residuos generalizados para construir la heteroscedasticidad causada por variables explicativas no discretas.

37
<table>
<thead>
<tr>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
<th>Var</th>
<th>Probit</th>
<th>Tobit</th>
<th>SCLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-17.095</td>
<td>-0.824</td>
<td>-0.1386</td>
<td>Prim</td>
<td>0.142</td>
<td>0.011</td>
<td>0.00480</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.6135)</td>
<td></td>
<td>(0.308)</td>
<td>(0.014)</td>
<td>(0.0505)</td>
</tr>
<tr>
<td>Lîngr</td>
<td>1.002</td>
<td>0.042</td>
<td>0.0117</td>
<td>Sup</td>
<td>0.629</td>
<td>0.016</td>
<td>0.0043</td>
</tr>
<tr>
<td></td>
<td>(0.206)</td>
<td>(0.009)</td>
<td>(0.0485)</td>
<td></td>
<td>(0.589)</td>
<td>(0.022)</td>
<td>(0.0873)</td>
</tr>
<tr>
<td>R 1</td>
<td>5.304</td>
<td>0.262</td>
<td>0.0147</td>
<td>Par</td>
<td>0.464</td>
<td>0.032</td>
<td>0.00564</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0912)</td>
<td></td>
<td>(0.494)</td>
<td>(0.021)</td>
<td>(0.0796)</td>
</tr>
<tr>
<td>R 2</td>
<td>5.666</td>
<td>0.263</td>
<td>0.0107</td>
<td>Jub</td>
<td>0.626</td>
<td>0.023</td>
<td>-0.0001</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0738)</td>
<td></td>
<td>(0.576)</td>
<td>(0.025)</td>
<td>(0.7378)</td>
</tr>
<tr>
<td>R 3</td>
<td>5.459</td>
<td>0.255</td>
<td>0.00844</td>
<td>Emplea</td>
<td>0.265</td>
<td>0.004</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0718)</td>
<td></td>
<td>(0.589)</td>
<td>(0.025)</td>
<td>(0.0854)</td>
</tr>
<tr>
<td>R 4</td>
<td>5.054</td>
<td>0.262</td>
<td>0.0110</td>
<td>Asal 1</td>
<td>0.214</td>
<td>-0.008</td>
<td>-0.0088</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0776)</td>
<td></td>
<td>(0.564)</td>
<td>(0.024)</td>
<td>(0.0854)</td>
</tr>
<tr>
<td>R 5</td>
<td>4.609</td>
<td>0.221</td>
<td>0.0061</td>
<td>Asal 2</td>
<td>-0.160</td>
<td>-0.008</td>
<td>-0.0033</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0737)</td>
<td></td>
<td>(0.655)</td>
<td>(0.029)</td>
<td>(0.0912)</td>
</tr>
<tr>
<td>R 6</td>
<td>4.256</td>
<td>0.206</td>
<td>0.00643</td>
<td>Agrar</td>
<td>0.042</td>
<td>0.004</td>
<td>-0.0021</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0776)</td>
<td></td>
<td>(0.293)</td>
<td>(0.013)</td>
<td>(0.0563)</td>
</tr>
<tr>
<td>R 7</td>
<td>5.320</td>
<td>0.248</td>
<td>0.0028</td>
<td>Cbla</td>
<td>0.223</td>
<td>0.014</td>
<td>0.0071</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0563)</td>
<td></td>
<td>(0.241)</td>
<td>(0.011)</td>
<td>(0.0339)</td>
</tr>
<tr>
<td>R 8</td>
<td>5.352</td>
<td>0.263</td>
<td>0.0139</td>
<td>Tfam</td>
<td>-0.050</td>
<td>-0.003</td>
<td>-0.0015</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0796)</td>
<td></td>
<td>(0.064)</td>
<td>(0.003)</td>
<td>(0.0116)</td>
</tr>
<tr>
<td>R 9</td>
<td>5.014</td>
<td>0.235</td>
<td>0.0057</td>
<td>Edad</td>
<td>0.103</td>
<td>0.006</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0679)</td>
<td></td>
<td>(0.061)</td>
<td>(0.003)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>R 10</td>
<td>5.502</td>
<td>0.261</td>
<td>0.0142</td>
<td>Edad 2</td>
<td>-0.001</td>
<td>-0.008</td>
<td>-0.0058</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0815)</td>
<td></td>
<td>(0.5E-3)</td>
<td>(0.3E-4)</td>
<td>(0.7E-4)</td>
</tr>
<tr>
<td>R 11</td>
<td>4.972</td>
<td>0.234</td>
<td>0.00396</td>
<td>Sx</td>
<td>-0.677</td>
<td>-0.017</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0621)</td>
<td></td>
<td>(0.292)</td>
<td>(0.013)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>R 12</td>
<td>5.359</td>
<td>0.276</td>
<td>0.016</td>
<td>σ</td>
<td>———</td>
<td>0.0481</td>
<td>———</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.0990)</td>
<td></td>
<td>———</td>
<td>(0.004)</td>
<td>———</td>
</tr>
<tr>
<td>R 14</td>
<td>5.337</td>
<td>0.245</td>
<td>0.0069</td>
<td>Log</td>
<td>-161.45</td>
<td>-59.64</td>
<td>Normalidad</td>
</tr>
<tr>
<td></td>
<td>(370.3)</td>
<td>(17.94)</td>
<td>(0.1009)</td>
<td></td>
<td>(4)</td>
<td>0.669</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Notas:

a. Desviaciones típicas entre paréntesis
b. Variable endógena Tobit: Gtr
c. Variable endógena Probit: X 1
d. Het muestra el valor de un estadístico basado en los residuos generalizados para contrastar la heteroscedasticidad causada por variables explicativas no discretas.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>-0.0119</td>
<td>0.0751</td>
<td>0.0080</td>
<td>0.0644</td>
<td>0.0556</td>
<td>0.0542</td>
</tr>
<tr>
<td></td>
<td>(-14)</td>
<td>(0.910)</td>
<td>(0.074)</td>
<td>(0.792)</td>
<td>(0.589)</td>
<td>(0.589)</td>
</tr>
<tr>
<td>Ligr</td>
<td>0.0055</td>
<td>-0.0051</td>
<td>-0.0003</td>
<td>-0.0069</td>
<td>-0.0053</td>
<td>-0.0048</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(-682)</td>
<td>(-0.30)</td>
<td>(-912)</td>
<td>(-564)</td>
<td>(-556)</td>
</tr>
<tr>
<td>R 1</td>
<td>0.0063</td>
<td>-0.0085</td>
<td>0.0150</td>
<td>0.0461</td>
<td>0.0487</td>
<td>0.0176</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(-286)</td>
<td>(0.329)</td>
<td>(1.349)</td>
<td>(1.412)</td>
<td>(0.483)</td>
</tr>
<tr>
<td>R 2</td>
<td>0.0281</td>
<td>0.0036</td>
<td>0.0050</td>
<td>0.0288</td>
<td>0.0026</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>(0.963)</td>
<td>(0.166)</td>
<td>(0.144)</td>
<td>(0.920)</td>
<td>(0.082)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>R 3</td>
<td>0.0223</td>
<td>0.0130</td>
<td>0.0006</td>
<td>0.0104</td>
<td>0.0038</td>
<td>-0.0036</td>
</tr>
<tr>
<td></td>
<td>(0.760)</td>
<td>(-573)</td>
<td>(0.017)</td>
<td>(0.326)</td>
<td>(0.116)</td>
<td>(-104)</td>
</tr>
<tr>
<td>R 4</td>
<td>0.0213</td>
<td>-0.0074</td>
<td>0.0066</td>
<td>0.0078</td>
<td>0.0242</td>
<td>0.0414</td>
</tr>
<tr>
<td></td>
<td>(0.712)</td>
<td>(-315)</td>
<td>(0.159)</td>
<td>(0.242)</td>
<td>(0.725)</td>
<td>(1.144)</td>
</tr>
<tr>
<td>R 5</td>
<td>0.0316</td>
<td>-0.0193</td>
<td>0.0038</td>
<td>0.0522</td>
<td>-0.0073</td>
<td>-0.0043</td>
</tr>
<tr>
<td></td>
<td>(0.979)</td>
<td>(-530)</td>
<td>(0.085)</td>
<td>(1.206)</td>
<td>(-167)</td>
<td>(-108)</td>
</tr>
<tr>
<td>R 6</td>
<td>—</td>
<td>—</td>
<td>0.0395</td>
<td>-0.0071</td>
<td>0.0409</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.806)</td>
<td>(-201)</td>
<td>(1.068)</td>
<td></td>
</tr>
<tr>
<td>R 7</td>
<td>0.0124</td>
<td>-0.0135</td>
<td>0.0009</td>
<td>0.0070</td>
<td>0.0079</td>
<td>-0.0141</td>
</tr>
<tr>
<td></td>
<td>(0.425)</td>
<td>(-599)</td>
<td>(0.025)</td>
<td>(0.221)</td>
<td>(0.245)</td>
<td>(-414)</td>
</tr>
<tr>
<td>R 8</td>
<td>0.0202</td>
<td>-0.0162</td>
<td>0.0049</td>
<td>0.0155</td>
<td>0.0211</td>
<td>0.0323</td>
</tr>
<tr>
<td></td>
<td>(0.651)</td>
<td>(-664)</td>
<td>(0.116)</td>
<td>(0.454)</td>
<td>(0.550)</td>
<td>(0.898)</td>
</tr>
<tr>
<td>R 9</td>
<td>0.0163</td>
<td>-0.0179</td>
<td>-0.0220</td>
<td>0.0048</td>
<td>0.0049</td>
<td>-0.0161</td>
</tr>
<tr>
<td></td>
<td>(0.532)</td>
<td>(-722)</td>
<td>(4.62)</td>
<td>(0.148)</td>
<td>(0.140)</td>
<td>(-432)</td>
</tr>
<tr>
<td>R 10</td>
<td>0.0366</td>
<td>0.0175</td>
<td>0.0306</td>
<td>0.0237</td>
<td>0.0330</td>
<td>0.0118</td>
</tr>
<tr>
<td></td>
<td>(1.221)</td>
<td>(0.716)</td>
<td>(0.726)</td>
<td>(0.741)</td>
<td>(0.980)</td>
<td>(0.343)</td>
</tr>
<tr>
<td>R 11</td>
<td>0.0079</td>
<td>-0.0203</td>
<td>0.0047</td>
<td>0.0151</td>
<td>0.0017</td>
<td>-0.0159</td>
</tr>
<tr>
<td></td>
<td>(0.258)</td>
<td>(-562)</td>
<td>(0.086)</td>
<td>(0.402)</td>
<td>(0.050)</td>
<td>(-394)</td>
</tr>
<tr>
<td>R 12</td>
<td>0.0327</td>
<td>0.0234</td>
<td>0.0145</td>
<td>0.0282</td>
<td>0.2053</td>
<td>0.0710</td>
</tr>
<tr>
<td></td>
<td>(1.021)</td>
<td>(0.782)</td>
<td>(0.324)</td>
<td>(0.826)</td>
<td>(4.682)</td>
<td>(1.859)</td>
</tr>
<tr>
<td>R 14</td>
<td>—</td>
<td>-0.0265</td>
<td>0.0273</td>
<td>0.0428</td>
<td>0.0246</td>
<td>-0.0176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-735)</td>
<td>(0.568)</td>
<td>(0.995)</td>
<td>(0.647)</td>
<td>(-444)</td>
</tr>
<tr>
<td>Lambda</td>
<td>0.0053</td>
<td>-0.0001</td>
<td>0.0142</td>
<td>0.0070</td>
<td>0.0045</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>(0.517)</td>
<td>(-0.09)</td>
<td>(0.749)</td>
<td>(0.608)</td>
<td>(0.326)</td>
<td>(0.756)</td>
</tr>
<tr>
<td>Rho</td>
<td>0.0367</td>
<td>0.00001</td>
<td>0.1233</td>
<td>0.0525</td>
<td>0.0211</td>
<td>0.1177</td>
</tr>
</tbody>
</table>

Notas:

a. Estadístico t-Student entre paréntesis

b. Este cuadro expone para cada muestra los resultados de la estimación para el proceso continuo en cada Selectivity Model.

c. En los años 78, 79 y 83 se ha eliminado también R6 para resolver problemas de multicolinealidad entre regresores ya que en esos años R13 es cero para todos los individuos con valores positivos para Gtur.
REFERENCIAS BIBLIOGRÁFICAS.

DOCUMENTOS PUBLICADOS

WP-EC 90-01 "Los determinantes de la evolución de la productividad en España"

WP-EC 90-02 "Mecanización y sustitución de factores productivos en la Agricultura Valenciana"

WP-EC 90-03 "Productivity in the service sector"

WP-EC 90-04 "Aplicación de los modelos de elección discreta al análisis de la adopción de innovaciones
technológicas. El caso del sector azulejero"

WP-EC 90-05 "Rentabilidad y eficiencia del mercado de acciones español"

WP-EC 90-06 "La coordinación de políticas fiscales en el marco de una unión económica y monetaria"

WP-EC 91-01 "Medición de la segregación ocupacional en España: 1964-1988"

WP-EC 91-02 "Capital Adequacy in the New Europe"

WP-EC 91-03 "Determinantes de la renta de los hogares de la Comunidad Valenciana. Una aproximación
empírica."

WP-EC 91-04 "Un Modelo para la Determinación de Centros Comerciales en España".

WP-EC 91-05 "Exchange Rate Dynamics. Cointegration and Error Correction Mechanism".

WP-EC 91-06 "Aplicación de una Versión Generalizada del Lema de Shephard con Datos de Panel al Sistema
Bancario Español".

WP-EC 91-07 "Necesidades, Dotaciones y Deficits en las Comunidades Autónomas"

WP-EC 91-08 "Un Análisis del Racionamiento de Crédito de Equilibrio"

WP-EC 91-09 "Cooperación entre Gobiernos para la Recaudación de Impuestos Compartidos"

WP-EC 91-10 "El impacto del Cambio Tecnológico en el Sistema Bancario: El Cajero Automático"
WP-EC 91-11 "El Reparto del Fondo de Compensación Interterritorial entre las Comunidades Autónomas"

WP-EC 91-12 "Sobre la Distribución Justa de un Pastel y su Aplicación al Problema de la Financiación de las Comunidades Autónomas"

WP-EC 92-01 "Asignaciones Igualitarias y Eficientes en Presencia de Externalidades"

WP-EC 92-02 "Estructura del Consumo Alimentario y Desarrollo Económico"

WP-EC 92-03 "Preferencias de Gasto Reveladas por las CC.AA."

WP-EC 92-04 "Valoración de Títulos con Riesgo: Hacia un Enfoque Alternativo"

WP-EC 92-05 "Infraestructura y Crecimiento Económico: El Caso de las Comunidades Autónomas"

WP-EC 92-06 "Evolución y Estrategia: Teoría de Juegos con Agentes Limitados y un Contexto Cambiante"

WP-EC 92-07 "La Medición del Bienestar mediante Indicadores de ‘Renta Real’: Caracterización de un Índice de Bienestar Tipo Theil"

WP-EC 92-08 "Corresponsabilización Fiscal de Dos Niveles de Gobierno: Relaciones Principal-Agente"

WP-EC 92-09 "Labour Market and International Migration Flows: The Case of Spain"

WP-EC 92-10 "Un Análisis Microeconómico de la Demanda de Turismo en España"